Как найти работу силы сопротивления воздуха. Как найти силу сопротивления. Трение частиц воздуха

19.08.2020

Воздушное сопротивление

Первоклассный бегун, состязающийся на скорость, вовсе не стремится в начале бега быть впереди соперников. Напротив, он старается держаться позади них; только приблизившись к финишу, он проскальзывает мимо других бегунов и приходит к конечному пункту первым. Для чего избирает он такой маневр? Почему ему выгоднее бежать позади других?

Причина та, что при быстром беге приходится затрачивать немало работы для преодоления сопротивления воздуха. Обыкновенно мы не думаем о том, что воздух может служить помехой нашему движению: расхаживая по комнате или прогуливаясь по улице, мы не замечаем, чтобы воздух стеснял наши движения. Но это только потому, что скорость нашей ходьбы невелика. При быстром движении воздух уже заметно мешает нам двигаться. Кто ездит на велосипеде, тот хорошо знает, что воздух мешает быстрой езде. Недаром гонщик пригибается к рулю своей машины: он этим уменьшает величину той поверхности, на которую напирает воздух. Вычислено, что при скорости 10 км в час велосипедист тратит седьмую часть своих усилий на то, чтобы бороться с воздухом; при скорости 20 км на борьбу с воздухом уходит уже четвертая доля усилий ездока. При еще большей скорости приходится расходовать на преодоление воздушного сопротивления третью долю работы и т. д.

Теперь вам станет понятно загадочное поведение искусного бегуна. Помещаясь позади других, менее опытных бегунов, он освобождает себя от работы по преодолению воздушного сопротивления, так как эту работу выполняет за него бегущий впереди. Он сберегает свои силы, пока не приблизится к цели настолько, что станет наконец выгодно обогнать соперников.

Маленький опыт разъяснит вам сказанное. Вырежьте из бумаги кружок величиной с пятикопеечную монету. Уроните монету и кружок порознь с одинаковой высоты. Вы уже знаете, что в пустоте все тела должны падать одинаково быстро. В нашем случае правило не оправдается: бумажный кружок упадет на пол заметно позднее монеты. Причина та, что монета лучше одолевает сопротивление воздуха, чем бумажка. Повторите опыт на иной лад: положите бумажный кружок поверх монеты и тогда уроните их. Вы увидите, что и кружок и монета достигнут пола в одно время. Почему? Потому что на этот раз бумажному кружку не приходится бороться с воздухом: эту работу выполняет за него монета, движущаяся впереди. Точно так же и бегуну, движущемуся позади другого, легче бежать: он освобожден от борьбы с воздухом.

Из книги Медицинская физика автора Подколзина Вера Александровна

41. Полное сопротивление ((импеданс) тканей организма. Физические основы реографии Ткани организма проводят не только постоянный, но и пе ременный ток. В организме нет таких систем, которые бы ли бы подобны катушкам индуктивности, поэтому индук тивность его близка к

Из книги Новейшая книга фактов. Том 3 [Физика, химия и техника. История и археология. Разное] автора Кондрашов Анатолий Павлович

Из книги Межпланетные путешествия [Полёты в мировое пространство и достижение небесных тел] автора Перельман Яков Исидорович

Из книги Механика от античности до наших дней автора Григорьян Ашот Тигранович

Сопротивление воздуха И это еще не все, что ожидает пассажиров в течение того краткого мига, который они проведут в канале пушки. Если бы каким-нибудь чудом они остались живы в момент взрыва, гибель ожидала бы их у выхода из орудия. Вспомним о сопротивлении воздуха! При

Из книги автора

ТЕОРИЯ УПРУГОСТИ И СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ Связь между прикладными задачами и теоретическими обобщениями в русской механике второй половины XIX - начала XX в. получила также яркое выражение в работах по теории упругости и сопротивлению материалов.Задачи теории

Решение.

Для решения задачи рассмотрим физическую систему «тело – гравитационное поле Земли». Тело будем считать материальной точкой, а гравитационное поле Земли - однородным. Выделенная физическая система является незамкнутой, т.к. во время движения тела взаимодействует с воздухом.
Если не учитывать выталкивающую силу, действующую на тело со стороны воздуха, то изменение полной механической энергии системы равняется работе силы сопротивления воздуха, т.е. ∆ E = A c .

Нулевой уровень потенциальной энергии выберем на поверхности Земли. Единственной внешней силой в отношении системы «тело – Земля» является сила сопротивления воздуха, направленная вертикально вверх. Начальная энергия системы E 1 , конечная E 2 .

Работа силы сопротивления A.

Т.к. угол между силой сопротивления и перемещением равен 180° , то косинус равен -1, поэтому A = - F c h . Приравняем A.

Рассматриваемую незамкнутую физическую систему можно также описать теоремой от изменении кинетической энергии системы взаимодействующих между собой объектов, согласно которой изменение кинетической энергии системы равно работе, совершенной внешними и внутренними силами при ее переходе из начального состояния в конечное. Если не учитывать выталкивающую силу, действующую на тело со стороны воздуха, а внутренней – сила тяжести. Следовательно ∆ E к = A 1 + A 2 , где A 1 = mgh – работа силы тяжести, A 2 = F c hcos 180° = - F c h – работа силы сопротивления; ∆ E = E 2 – E 1 .

3.5. Законы сохранения и изменения энергии

3.5.1. Закон изменения полной механической энергии

Изменение полной механической энергии системы тел происходит при совершении работы силами, действующими как между телами системы, так и со стороны внешних тел.

Изменение механической энергии ∆E системы тел определяется законом изменения полной механической энергии :

∆E = E 2 − E 1 = A внеш + A тр(сопр) ,

где E 1 - полная механическая энергия начального состояния системы; E 2 - полная механическая энергия конечного состояния системы; A внеш - работа, совершаемая над телами системы внешними силами; A тр(сопр) - работа, совершаемая силами трения (сопротивления), действующими внутри системы.

Пример 30. На некоторой высоте покоящееся тело имеет потенциальную энергию, равную 56 Дж. К моменту падения на Землю тело имеет кинетическую энергию, равную 44 Дж. Определить работу сил сопротивления воздуха.

Решение. На рисунке показаны два положения тела: на некоторой высоте (первое) и к моменту падения на Землю (второе). Нулевой уровень потенциальной энергии выбран на поверхности Земли.

Полная механическая энергия тела относительно поверхности Земли определяется суммой потенциальной и кинетической энергии:

  • на некоторой высоте

E 1 = W p 1 + W k 1 ;

  • к моменту падения на Землю

E 2 = W p 2 + W k 2 ,

где W p 1 = 56 Дж - потенциальная энергия тела на некоторой высоте; W k 1 = 0 - кинетическая энергия покоящегося на некоторой высоте тела; W p 2 = 0 Дж - потенциальная энергия тела к моменту падения на Землю; W k 2 = 44 Дж - кинетическая энергия тела к моменту падения на Землю.

Работу сил сопротивления воздуха найдем из закона изменения полной механической энергии тела:

где E 1 = W p 1 - полная механическая энергия тела на некоторой высоте; E 2 = W k 2 - полная механическая энергия тела к моменту падения на Землю; A внеш = 0 - работа внешних сил (внешние силы отсутствуют); A сопр - работа сил сопротивления воздуха.

Искомая работа сил сопротивления воздуха, таким образом, определяется выражением

A сопр = W k 2 − W p 1 .

Произведем вычисление:

A сопр = 44 − 56 = −12 Дж.

Работа сил сопротивления воздуха является отрицательной величиной.

Пример 31. Две пружины с коэффициентами жесткости 1,0 кН/м и 2,0 кН/м соединены параллельно. Какую работу нужно совершить, чтобы растянуть систему пружин на 20 см?

Решение. На рисунке показаны две пружины с разными коэффициентами жесткости, соединенные параллельно.

Внешняя сила F → , растягивающая пружины, зависит от величины деформации составной пружины, поэтому расчет работы указанной силы по формуле для вычисления работы постоянной силы неправомерен.

Для расчета работы воспользуемся законом изменения полной механической энергии системы:

E 2 − E 1 = A внеш + A сопр,

где E 1 - полная механическая энергия составной пружины в недеформированном состоянии; E 2 - полная механическая энергия деформированной пружины; A внеш - работа внешней силы (искомая величина); A сопр = 0 - работа сил сопротивления.

Полная механическая энергия составной пружины представляет собой потенциальную энергию ее деформации:

  • для недеформированной пружины

E 1 = W p 1 = 0,

  • для растянутой пружины

E 2 = W p 2 = k общ (Δ l) 2 2 ,

где k общ - общий коэффицент жесткости составной пружины; ∆l - величина растяжения пружины.

Общий коэффициент жесткости двух пружин, соединенных параллельно, есть сумма

k общ = k 1 + k 2 ,

где k 1 - коэффициент жесткости первой пружины; k 2 - коэффициент жесткости второй пружины.

Работу внешней силы найдем из закона изменения полной механической энергии тела:

A внеш = E 2 − E 1 ,

подставив в данное выражение формулы, определяющие E 1 и E 2 , а также выражение для общего коэффициента жесткости составной пружины:

A внеш = k общ (Δ l) 2 2 − 0 = (k 1 + k 2) (Δ l) 2 2 .

Выполним расчет:

A внеш = (1,0 + 2,0) ⋅ 10 3 ⋅ (20 ⋅ 10 − 2) 2 2 = 60 Дж.

Пример 32. Пуля массой 10,0 г, летящая со скоростью 800 м/с, попадает в стену. Модуль силы сопротивления движению пули в стене постоянен и составляет 8,00 кН. Определить, на какое расстояние пуля углубится в стену.

Решение. На рисунке показаны два положения пули: при ее подлете к стене (первое) и к моменту остановки (застревания) пули в стене (второе).

Полная механическая энергия пули яв­ляется кинетической энергией ее движения:

  • при подлете пули к стене

E 1 = W k 1 = m v 1 2 2 ;

  • к моменту остановки (застревания) пули в стене

E 2 = W k 2 = m v 2 2 2 ,

где W k 1 - кинетическая энергия пули при подлете к стене; W k 2 - кинетическая энергия пули к моменту ее остановки (застревания) в стене; m - масса пули; v 1 - модуль скорости пули при подлете к стене; v 2 = 0 - величина скорости пули к моменту остановки (застревания) в стене.

Расстояние, на которое пуля углубится в стену, найдем из закона изменения полной механической энергии пули:

E 2 − E 1 = A внеш + A сопр,

где E 1 = m v 1 2 2 - полная механическая энергия пули при подлете к стене; E 2 = 0 - полная механическая энергия пули к моменту ее остановки (застревания) в стене; A внеш = 0 - работа внешних сил (внешние силы отсутствуют); A сопр - работа сил сопротивления.

Работа сил сопротивления определяется произведением:

A сопр = F сопр l cos α ,

где F сопр - модуль силы сопротивления движению пули; l - расстояние, на которое углубится пуля в стену; α = 180° - угол между направлениями силы сопротивления и направлением движения пули.

Таким образом, закон изменения полной механической энергии пули в явном виде выглядит следующим образом:

− m v 1 2 2 = F сопр l cos 180 ° .

Искомое расстояние определяется отношением

l = − m v 1 2 2 F сопр cos 180 ° = m v 1 2 2 F сопр

l = 10,0 ⋅ 10 − 3 ⋅ 800 2 2 ⋅ 8,00 ⋅ 10 3 = 0,40 м = 400 мм.

© ru-opel.ru, 2024
Автомобильный портал