Подключение датчика движения к ардуино. Пироэлектрический инфракрасный (PIR) датчик движения и Arduino. Подключение PIR датчика движения к Arduino

17.07.2023

Обзор датчика пространства HC-SR501

Модуль датчика движения (или присутствия) HCSR501 на основе пироэлектрического эффекта состоит из PIR-датчика 500BP (рис. 1) с дополнительной электрической развязкой на микросхеме BISS0001 и линзы Френеля, которая используется для увеличения радиуса обзора и усиления инфракрасного сигнала (рис. 2). Модуль используется для обнаружения движения объектов, излучающих инфракрасное излучение. Чувствительный элемент модуля – PIR-датчик 500BP. Принцип его работы основан на пироэлектричестве. Это явление возникновения электрического поля в кристаллах при изменении их температуры.

Управление работой датчика осуществляет микросхема BISS0001. На плате расположены два потенциометра, с помощью первого настраивается дистанция обнаружения объектов (от 3 до 7 м), с помощью второго - задержка после первого срабатывания датчика (5 - 300 сек). Модуль имеет два режима – L и H. Режим работы устанавливается с помощью перемычки. Режим L – режим единичного срабатывания, при обнаружении движущегося объекта на выходе OUT устанавливается высокий уровень сигнала на время задержки, установленное вторым потенциометром. На это время датчик не реагирует на движущиеся объекты. Этот режим можно использовать в системах охраны для подачи сигнала тревоги на сирену. В режиме H датчик срабатывает каждый раз при обнаружении движения. Этот режим можно использовать для включения освещения. При включении модуля происходит его калибровка, длительность калибровки приблизительно одна минута, после чего модуль готов к работе. Устанавливать датчик желательно вдали от открытых источников света.

Рисунок 1. PIR-датчик 500BP

Рисунок 2. Линза Френеля

Технические характеристики HC-SR501

  • Напряжение питания: 4.5-20 В
  • Ток потребления: 50 мА
  • Напряжение на выходе OUT: HIGH – 3,3 В, LOW – 0 В
  • Интервал обнаружения: 3-7 м
  • Длительность задержки после срабатывания: 5 - 300 сек
  • Угол наблюдения до 120
  • Время блокировки до следующего замера: 2.5сек.
  • Режимы работы: L - одиночное срабатывание, H - срабатывание при каждом событии
  • Рабочая температура от -20 до +80C
  • Габариты 32x24x18 мм

Подключение инфракрасного датчика движения к Arduino

Модуль имеет 3 вывода (рис. 3):
  • VCC - питание 5-20 В;
  • GND - земля;
  • OUT - цифровой выход (0-3.3В).

Рисунок 3. Назначение контактов и настройка HC-SR501

Подключим модуль HC-SR501 к плате Arduino (Схема соединений на рис. 4) и напишем простой скетч, сигнализирующий звуковым сигналом и сообщением в последовательный порт, при обнаружении движущегося объекта. Для фиксации срабатываний микроконтроллером будем использовать внешние прерывания на вход 2. Это прерывание int0.

Рисунок 4. Схема соединений подключения модуля HC-SR501 к плате Arduino

Загрузим скетч из листинга 1 на плату Arduino и посмотрим как датчик реагирует на препятствия (см. рис. 5). Модуль установим в режим работы L. Листинг 1 // Скетч к обзору датчика движения/присутствия HC-SR501 // сайт // контакт подключения выхода датчика #define PIN_HCSR501 2 // флаг сработки boolean flagHCSR501=false; // контакт подключения динамика int soundPin=9; // частота звукового сигнала int freq=587; void setup() { // инициализация последовательного порта Serial.begin(9600); // запуск обработки прерывания int0 attachInterrupt(0, intHCSR501,RISING); } void loop() { if (flagHCSR501 == true) { // Сообщение в последовательный порт Serial.println("Attention!!!"); // звуковая сигнализация на 5 сек tone(soundPin,freq,5000); // обнулить флаг сработки flagHCSR501 = false; } } // обработка прерывания void intHCSR501() { // установка флага сработки датчика flagHCSR501 = true; }

Рисунок 5. Вывод данных в монитор последовательного порта

С помощью потенциометров экспериментируем с длительностью сигнала на выходе OUT и чувствительностью датчика (расстоянием фиксации объекта).

Пример использования

Создадим пример отправки sms при срабатывании датчика движения/присутствия на охраняемом объекте. Для этого будем использовать GPS/GPRS шилд. Нам понадобятся следующие детали:
  • плата Arduino Uno
  • GSM/GPRS шилд
  • npn-транзистор, например С945
  • резистор 470 Ом
  • динамик 8 Ом 1Вт
  • провода
Соберем схему соединений согласно рис. 6.

Рисунок 6. Схема соединений

При срабатывании датчика вызываем процедуру отправки sms с текстовым сообщением Atten tion!!! на номер PHONE. Содержимое скетча представлено в листинге 2. GSM/GPRS шилд в режиме отправки sms потребляет ток до 2 А, поэтому используем внешний источник питания 12В 2А. Листинг 2 // Скетч 2 к обзору датчика движения/присутствия HC-SR501 // отправка sms при срабатывании датчика // сайт // контакт подключения выхода датчика #define PIN_HCSR501 2 // флаг сработки boolean flagHCSR501 false; // контакт подключения динамика int soundPin=9; // частота звукового сигнала int freq=587; // библиотека SoftwareSerial #include // номер телефона для отправки sms #define PHONE "+79034461752" // Выводы для SoftwareSerial (у вас могут быть 2,3) SoftwareSerial GPRS(7, 8); void setup() { // инициализация последовательного порта Serial.begin(9600); // запуск обработки прерывания int0 attachInterrupt(0, intHCSR501,RISING); // для обмена с GPG/GPRS шилдом GPRS.begin(19200); } void loop() { if (flagHCSR501 == true) { // Сообщение в последовательный порт Serial.println("Attention!!!"); // звуковая сигнализация на 5 сек tone(soundPin,freq,5000); // отправить sms SendSMS(); // обнулить флаг сработки flagHCSR501 = false; } } // обработка прерывания void intHCSR501() { // установка флага сработки датчика flagHCSR501 = true; } // подпрограмма отправки sms void SendSMS() { // AT-команда установки text mode GPRS.print("AT+CMGF=1\r"); delay(100); // номер телефона GPRS.print("AT + CMGS = \""); GPRS.print(PHONE); GPRS.println("\""); delay(200); // сообщение GPRS.println("Attention!!!"); delay(200); // ASCII код ctrl+z – окончание передачи GPRS.println((char)26); delay(200); GPRS.println(); }

Часто задаваемые вопросы FAQ

1. Модуль не срабатывает при движении объекта
  • Проверьте правильность подключения модуля.
  • Настройте потенциометром дистанцию срабатывания.
2. Датчик срабатывает слишком часто
  • Настройте потенциометром задержку длительности сигнала.
  • Установите перемычку в режим единичного срабатывания L.

Принцип работы PIR (Passive Infra Red)- датчиков

Любой объект, обладающий какой-то температурой, становится источником электромагнитного (теплового) излучения, в том числе - человеческое тело. Длина волны этого излучения зависит от температуры и находится в инфракрасной части спектра. Это излучение невидимо для глаза и улавливается только датчиками. Их еще называют PIR-датчиками.

Это аббревиатура от слов «passive infrared» или «пассивные инфракрасные» датчики. Пассивные - потому что датчики сами не излучают, а только воспринимают излучение с длиной волны от 7 до 14 µм.

Человек излучает тепло. Его тепловое изображение в инфракрасных лучах показывает распределение температуры по поверхности тела. Более нагретые предметы выглядят светлее, более холодные - темнее, т.к. излучают меньше тепла.

PIR-датчик содержит чувствительный элемент, который реагирует на изменение теплового излучения. Если оно остается постоянным - электрический сигнал не генерируется.

Для того, чтобы датчик среагировал на движение, применяют специальные линзы (линзы Френеля) с несколькими фокусирующими участками, которые разбивают общую тепловую картину на активные и пассивные зоны, расположенные в шахматном порядке. Человек, находясь в сфере работы датчика, занимает несколько активных зон полностью или частично.

Поэтому, даже при минимальном движении происходит перемещение из одних активных зон в другие, что вызывает срабатывание датчика. Фоновая тепловая картина, как правило, меняется очень медленно и равномерно. Датчик на нее не реагирует. Высокая плотность активных и пассивных зон позволяет датчику надежно определить присутствие человека даже при малейшем движении.

Принцип работы PIR датчиков и типовая электрическая схема устройства. Любой человек становится источником теплового излучения. Длина волны этого излучения зависит от температуры и находится в инфракрасной части спектра. Это излучение улавливается специальными датчиками, которые называют PIR-датчики.

PIR - это сокращённое «passive infrared - пассивные инфракрасные» датчики. Пассивные - потому что датчики сами не излучают, а только воспринимают излучение с длиной волны от 7 до 14 мкм. PIR-датчик содержит чувствительный элемент, который реагирует на изменение теплового излучения. Если оно остается постоянным - электрический сигнал не генерируется. Чтобы датчик среагировал на движение, применяют линзы Френеля с несколькими фокусирующими участками, которые разбивают общую тепловую картину на активные и пассивные зоны, расположенные в шахматном порядке. Человек, находясь в сфере работы датчика, занимает несколько активных зон полностью или частично. Поэтому, даже при минимальном движении происходит перемещение из одних активных зон в другие, что вызывает срабатывание датчика. А вот фоновая тепловая картина меняется очень медленно и равномерно, поэтому датчик на нее не реагирует. Высокая плотность активных и пассивных зон позволяет датчику надежно определить присутствие человека при малейшем движении.

Данная схема основана на микросхеме HT7610A , которая как раз и предназначена для использования в автоматических PIR-лампах или сигнализациях. Он может работать в 3-х проводной конфигурации для передачи сигнала. В данном проекте использовано реле вместо тиристора, как это часто делается, для подключения любого рода нагрузки. Внутри микросхемы есть операционный усилитель, компаратор, таймер, детектор перехода через ноль, схема управления, регулятор напряжения, генератор и выход синхронизации генератора.

PIR датчик обнаруживает инфракрасный изменённый сигнал, вызванный движением человеческого тела и преобразует его в колебания напряжения. Схеме не требуется понижающий трансформатор и она может работать непосредственно от 220V. Балластный конденсатор С7 должен быть на 0.33uF/275V, а лучше на 400V.

Особенности схемы датчика

  • Рабочее напряжение схемы: 5V-12V.
  • Ток нагрузки 80 мА, когда реле включено.
  • В режиме ожидания ток: 100 мкА
  • ON/AUTO/OFF режимы работы.
  • Автосброс, если сигнал исчезает за 3 секунды.
  • Релейный выход для подключения нагрузки.
  • Фоторезистор LDR для обнаружения дневного/ночного режима.
  • Джампер J1 для установки режима.
  • Резистор PR1 устанавливает чувствительность датчика.
  • Резистор PR2 устанавливает выходную продолжительность сигнала состояния выхода.

Схема PIR датчика предлагает три режима работы (ON, AUTO, OFF), которые могут быть установлены вручную джампером J1. CDS система представляет собой КМОП-триггер Шмитта, что используется, чтобы различать дневное и ночное время.

Всем привет, сегодня мы рассмотрим устройство под названием датчик движения. Многие из нас слышали об этой штуке, кто то даже имел дело с этим устройством. Что же такое датчик движения? Попробуем разобраться, итак:

Датчик движения, или датчик перемещения - устройство (прибор) обнаруживающий перемещение каких либо объектов. Очень часто эти устройства, используются в системах охраны, сигнализации и мониторинга. Форм факторов этих датчиков существует великое множество, но мы рассмотрим именно модуль датчика движения для подключения к платам Arduino, и именно от фирмы RobotDyn. Почему именно этой фирмы? Я не хочу заниматься рекламой этого магазина и его продукции, но именно продукция данного магазина была выбрана в качестве лабораторных образцов благодаря качественной подаче своих изделий для конечного потребителя. Итак, встречаем - датчик движения (PIR Sensor) от фирмы RobotDyn:


Эти датчики малы по габаритам, потребляют мало энергии и просты в использовании. Кроме того - датчики движения фирмы RobotDyn имеют еще и маркированные шелкографией контакты, это конечно мелочь, но очень приятная. Ну а тем кто использует такие же датчики, но только других фирм, не стоит беспокоиться - все они имеют одинаковый функционал, и даже если не промаркированы контакты, то цоколёвку таких датчиков легко найти в интернете.

Основные технические характеристики датчика движения(PIR Sensor):

Зона работы датчика: от 3 до 7 метров

Угол слежения: до 110 о

Рабочее напряжение: 4,5...6 Вольт

Потребляемый ток: до 50мкА

Примечание: Стандартный функционал датчика можно расширить, подключив на пины IN и GND датчик освещенности, и тогда датчик движения будет срабатывать только в темноте.

Инициализация устройства.

При включении, датчику требуется почти минута для инициализации. В течение этого периода, датчик может давать ложные сигналы, это следует учесть при программировании микроконтроллера с подключенным к нему датчиком, или в цепях исполнительных устройств, если подключение производится без использования микроконтроллера.

Угол и область обнаружения.

Угол обнаружения(слежения) составляет 110 градусов, диапазон расстояния обнаружения от 3 до 7 метров, иллюстрация ниже показывает всё это:

Регулировка чувствительности(дистанции обнаружения) и временной задержки.

На приведённой ниже таблице показаны основные регулировки датчика движения, слева находится регулятор временной задержки соответственно в левом столбце приведено описание возможных настроек. В правом столбце описание регулировок расстояния обнаружения.


Подключение датчика:

  • PIR Sensor - Arduino Nano
  • PIR Sensor - Arduino Nano
  • PIR Sensor - Arduino Nano
  • PIR Sensor - для датчика освещенности
  • PIR Sensor - для датчика освещенности

Типичная схема подключения дана на схеме ниже, в нашем случае датчик показан условно с тыльной стороны и подключен к плате Arduino Nano.

Скетч демонстрирующий работу датчика движения(используем программу ):

/* * PIR Sensor -> Arduino Nano * PIR Sensor -> Arduino Nano * PIR Sensor -> Arduino Nano */ void setup() { //Установить соединение с монитором порта Serial.begin(9600); } void loop() { //Считываем пороговое значение с порта А0 //обычно оно выше 500 если есть сигнал if(analogRead(A0) > 500) { //Сигнал с датчика движения Serial.println("Есть движение!!!"); } else { //Нет сигнала Serial.println("Всё тихо..."); } }

Скетч является обычной проверкой работы датчика движения, в нём есть много недостатков, таких как:

  1. Возможные ложные срабатывания, датчику необходима самоинициализация в течение одной минуты.
  2. Жесткая привязка к монитору порта, нет выходных исполнительных устройств(реле, сирена, светоиндикация)
  3. Слишком короткое время сигнала на выходе датчика, при обнаружении движения необходимо программно задержать сигнал на более долгий период времени.

Усложнив схему и расширив функционал датчика, можно избежать вышеописанных недостатков. Для этого потребуется дополнить схему модулем реле и подключить обычную лампу на 220 вольт через данный модуль. Сам же модуль реле будет подключен к пину 3 на плате Arduino Nano. Итак принципиальная схема:

Теперь пришло время немного усовершенствовать скетч, которым проверялся датчик движения. Именно в скетче, будет реализована задержка выключения реле, так как сам датчик движения имеет слишком короткое время сигнала на выходе при срабатывании. Программа реализует 10-ти секундную задержку при срабатывании датчика. При желании это время можно увеличить или уменьшить, изменив значение переменной DelayValue . Ниже представлен скетч и видео работы всей собранной схемы:

/* * PIR Sensor -> Arduino Nano * PIR Sensor -> Arduino Nano * PIR Sensor -> Arduino Nano * Relay Module -> Arduino Nano */ //relout - пин(выходной сигнал) для модуля реле const int relout = 3; //prevMillis - переменная для хранения времени предидущего цикла сканирования программы //interval - временной интервал для отсчета секунд до выключения реле unsigned long prevMillis = 0; int interval = 1000; //DelayValue - период в течение которого реле удерживается во включенном состоянии int DelayValue = 10; //initSecond - Переменная итерации цикла инициализации int initSecond = 60; //countDelayOff - счетчик временных интервалов static int countDelayOff = 0; //trigger - флаг срабатывания датчика движения static bool trigger = false; void setup() { //Стандартная процедура инициализации порта на который подключен модуль реле //ВАЖНО!!! - чтобы модуль реле оставался в первоначально выключенном состоянии //и не срабатывал при инициализации, нужно записать в порт входа/выхода //значение HIGH, это позволит избежать ложных "перещелкиваний", и сохранит //состояние реле таким, каким оно было до включения всей схемы в работу pinMode(relout, OUTPUT); digitalWrite(relout, HIGH); //Здесь всё просто - ждем когда закончатся 60 циклов(переменная initSecond) //продолжительностью в 1 секунду, за это время датчик "самоинициализируется" for(int i = 0; i < initSecond; i ++) { delay(1000); } } void loop() { //Считать значение с аналогового порта А0 //Если значение выше 500 if(analogRead(A0) > 500) { //Установить флаг срабатывания датчика движения if(!trigger) { trigger = true; } } //Пока флаг срабатывания датчика движения установлен while(trigger) { //Выполнять следующие инструкции //Сохранить в переменной currMillis //значение миллисекунд прошедших с момента начала //выполнения программы unsigned long currMillis = millis(); //Сравниваем с предидущим значением миллисекунд //если разница больше заданного интервала, то: if(currMillis - prevMillis > interval) { //Сохранить текущее значение миллисекунд в переменную prevMillis prevMillis = currMillis; //Проверяем счетчик задержки сравнивая его со значением периода //в течение которого реле должно удерживаться во включенном //состоянии if(countDelayOff >= DelayValue) { //Если значение сравнялось, то: //сбросить флаг срабатывания датчика движения trigger = false; //Обнулить счетчик задержки countDelayOff = 0; //Выключить реле digitalWrite(relout, HIGH); //Прервать цикл break; } else { //Если значение всё еще меньше, то //Инкрементировать счетчик задержки на единицу countDelayOff ++; //Удерживать реле во включенном состоянии digitalWrite(relout, LOW); } } } }

В программе присутствует конструкция:

unsigned long prevMillis = 0;

int interval = 1000;

...

unsigned long currMillis = millis();

if(currMillis - prevMillis > interval)

{

prevMillis = currMillis;

....

// Наши операции заключенные в тело конструкции

....

}

Чтобы внести ясность, было решено отдельно прокомментировать эту конструкцию. Итак, данная конструкция позволяет выполнить как бы параллельную задачу в программе. Тело конструкции срабатывает примерно раз в секунду, этому способствует переменная interval . Сначала, переменной currMillis присваивается значение возвращаемое при вызове функции millis() . Функция millis() возвращает количество миллисекунд прошедших с начала программы. Если разница currMillis - prevMillis больше чем значение переменной interval то это означает, что уже прошло более секунды с начала выполнения программы, и нужно сохранить значение переменной currMillis в переменную prevMillis затем выполнить операции заключенные в теле конструкции. Если же разница currMillis - prevMillis меньше чем значение переменной interval , то между циклами сканирования программы еще не прошло секунды, и операции заключенные в теле конструкции пропускаются.

Ну и в завершение статьи видео от автора:

Пожалуйста, включите javascript для работы комментариев.

В этой статье описано создание датчика движения на основе модулей с пассивным ИК датчиком. Есть много моделей модулей с PIR датчиком от разных производителей, но в основе у них лежит один принцип. Они имеют один выход, который дает сигнал низкого или высокого уровня (в зависимости от модели) при обнаружении движения. В моем проекте микроконтроллер PIC12F635 постоянно следит за логическим уровнем на выходе модуля с датчиком и включает зуммер, когда он высокий.

Теория

Некоторые кристаллические материалы обладают свойством генерировать поверхностный электрический заряд при контакте с тепловым ИК излучением. Это явление известно как пироэлектричество. Пассивные модули с ИК датчиком работают на основе этого принципа. Тело человека излучает тепло в виде ИК излучения с максимальной длиной волны около 9,4 мкм. Появление человека создает внезапные изменения в ИК диапазоне окружающей среды, что воспринимается пироэлектрическим датчиком. Модуль с PIR датчиком имеет элементы которые усиливают сигнал для его соответствия логическим уровням. Перед началом работы датчику необходимо от 10 до 60 секунд для ознакомления с окружающей средой для дальнейшего нормального функционирования. В это время следует избегать движений в поле зрения датчика. Датчик действует на расстояние до 20 футов и не реагирует на естественные изменения окружающей среды, связанные с течение времени. При этом, датчик реагирует на любое резкое изменение окружающей среды(например появление человека). Модель с датчиком не следует размещать рядом с батареями, розетками и любыми другими предметами быстро меняющими свою температуру, т.к. это приведёт к ложному срабатыванию. Модули с PIR датчиком обычно имеют 3 контакта: Vcc, Выход и GND. Цоколевка у разных производителей может отличаться, поэтому я рекомендую проверить документацию. Также значение вывода может быть обозначено прямо на плате. На моём датчике таких обозначений нет. Он может работать при напряжении питания от 5 до 12V и имеет свой собственный встроенный стабилизатор напряжения. При наличии движения на выходе датчика появляется высокий логический уровень. Также он имеет 3х контактный джампер для установки режима работы. Боковые контакты имеют метки H и L. Когда перемычка находится в положении H, при срабатывании датчика несколько раз подряд на его выходе остается высокий логический уровень. В положении L, на выходе при каждом срабатывании датчика появляется отдельный импульс. Передняя часть модуля имеет линзу Френеля для фокусировки ИК излучения на чувствительный элемент.

Схема и конструкция

Схема датчика движения довольно проста. Устройство работает от 4 AA батарей, которые дают 6V. На диоде, который используется как защита от неправильного подключения питания, напряжение падает до 5,4V. Я проверял схему с NI-MH аккумулятором 4,8 V и она работала, но я рекомендую использовать щелочные батарейки по 1,5V каждая для лучшей производительности. Вы можете также использовать батареи 9V , но тогда вам необходим стабилизатор LM7805. Выход с модуля контролируется микроконтроллером PIC12F635 через порт GP5 (вывод 2). При движении на выходе датчика появляется напряжение около 3,3 V. Это напряжение распознаётся микроконтроллером ка высокий логический уровень, но я предпочел использовать это напряжение для управления NPN транзистором BC547, коллектор которого подключил к микроконтроллеру. Когда транзистор закрыт, на его коллекторе высокий логический уровень (+5V). При движении на выходе модуля появляется высокий логический уровень который насыщает транзистор и напряжение на его коллекторе падает до низкого логического уровня. Перемычки на датчике находится в позиции H, так что выходной сигнал датчика будет оставаться высоким до тех пор, пока движение не прекратится. Микроконтроллер PIC12F635 использует внутренний тактовый генератор, работающий на частоте 4,0 МГц.

Светодиод, подключенный к порту GP4 через токоограничивающий резистор мигает 3 раза при подключении питания. Пьезоэлектрический зуммер EFM-290ED подключенный к порту GP2 сообщает о наличии движения. Пьезоэлектрический зуммер дает максимально громкий звук на своей резонансной частоте. Зуммер который я использовал, имеет резонансную частоту 3,4 ± 0,5 кГц. После экспериментов с ним, я обнаружил, что максимальный звук он дает на частоте около 372 Гц. Хотя в документации сказано, что рабочее напряжение составляет от 7-12V, он работает и от напряжения 5V.

Программа

Программа написана на С и скомпилирована в для PIC. При подаче питания светодиод мигает три раза и это свидетельствует о успешном запуске. После этого микроконтроллер ждет 60 секунд до начала проверки значения на выходе с датчика. Это требуется для стабилизации датчика. Когда микроконтроллер определяет срабатывание датчика, он запускает пьезозуммер на частоте 3725Гц. MikroC имеет встроенную библиотеку для генерации звука (Sound_Play()). Зуммер издает звук до тех пор, пока датчик ощущает движение. Когда движение прекращается, логический уровень на выходе датчика изменяется, но зуммер не замолкает сразу, а еще в течение примерно 10 секунд издает звук на частоте 3570Гц. Если он обнаруживает движение снова, он опять запустится на частоте 3725 Гц. Этот проект использует внутренний генератор запущенный на частоте 4,0 МГц, MCLR и сторожевой таймер выключены.

/* Project: PIR Motion Sensor Alarm (PIC12F635) Piezo: EFM-290ED, 3.7 KHz connected at GP2 PIR sensor module in retriggering mode Internal Clock @ 4.0 MHz, MCLR Disabled, WDT OFF */ sbit Sensor_IP at GP5_bit; // sensor I/P sbit LED at GP4_bit; // LED O/P unsigned short trigger, counter; void Get_Delay(){ Delay_ms(300); } void main() { CMCON0 = 7; TRISIO = 0b00101000; // GP5, 5 I/P"s, Rest O/P"s GPIO = 0; Sound_Init(&GPIO,2); // Blink LED at Startup LED = 1; Get_Delay(); LED = 0; Get_Delay(); LED = 1; Get_Delay(); LED = 0; Get_Delay(); LED = 1; Get_Delay(); LED = 0; Delay_ms(60000); // 45 Sec delay for PIR module stabilization counter = 0; trigger = 0; do { while (!Sensor_IP) { // Sensor I/P Low Sound_Play(3725, 600); Delay_ms(500); trigger = 1; counter = 0; } if (trigger) { Sound_Play(3570, 600); Delay_ms(500); counter = counter+1; if(counter == 10) trigger=0; } }while(1); } // End main()

Фото устройства:

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
МК PIC 8-бит

PIC12F635

1 В блокнот
Биполярный транзистор

BC547

1 В блокнот
Резистор

1 кОм

1 В блокнот
Резистор

10 кОм

1 В блокнот
Резистор

470 Ом

1 В блокнот
Светодиод 1
© ru-opel.ru, 2024
Автомобильный портал