Уравнение механической характеристики асинхронного двигателя. схема замещения одной фазы. Механическая характеристика двигателя Механическая характеристика асинхронного двигателя с кз ротором

30.07.2023

Механические характеристики асинхронных двигателей

Асинхронные двигатели являются основными двигателями, которые наиболее широко используются как в промышленности, так и в агропромышленном производстве. Они обладают существенными преимуществами перед другими типами двигателей: просты в эксплуатации, надежны и имеют низкую стоимость.

В трехфазном асинхронном двигателе при подключении обмотки статора к сети трехфазного переменного напряжения создается вращающееся магнитное поле, которое, пересекая проводники обмотки ротора, наводит в них ЭДС, под воздействием которой в роторе появляются ток и магнитный поток. Взаимодействие магнитных потоков статора и ротора создает вращающий момент двигателя. Появление в обмотке ротора ЭДС, следовательно, и вращающего момента возможно только при наличии разности между скоростями вращения магнитного поля статора и ротора. Это различие в скоростях называют скольжением.

Скольжение асинхронного двигателя - это мера того, насколько ротор отстает в своем вращении от вращения магнитного поля статора. Оно обозначается буквой S и определяется по формуле

, (2.17)

где w 0 - угловая скорость вращения магнитного поля статора (синхронная угловая скорость двигателя); w - угловая скорость ротора; ν – частота вращения двигателя в относительных единицах.

Скорость вращения магнитного поля статора зависит от частоты тока питающей сети f и числа пар полюсов р двигателя: . (2.18)

Уравнение механической характеристики асинхронного двигателя можно вывести на основе упрощенной схемы замещения, приведенной на рис.2.11. В схеме замещения приняты следующие обозначения: U ф - первичное фазное напряжение; I 1 - фазный ток в обмотках статора; I 2 ́ - приведенный ток в обмотках ротора; X 1 – реактивное сопротивление обмотки статора; R 1 , R 1 2 – активные сопротивления в обмотках соответственно статора и приведенного ротора; X 2 ΄- приведенное реактивное сопротивление в обмотках ротора; R 0 , X 0 - активное и реактивное сопротивления контура намагничивания; S – скольжение.

В соответствии со схемой замещения на рис.2.11 выражение для тока ротора имеет вид

Рис. 2.11. Схема замещения асинхронного двигателя

Вращающий момент асинхронного двигателя может быть определен из выражения Мw 0 S=3(I 2 ΄) 2 R 2 ΄ по формуле

Подставив значение тока I 2 ΄ из формулы (2.19) в формулу (2.20), определяем вращающий момент двигателя в зависимости от скольжения, т.е. аналитическое выражение механической характеристики асинхронного двигателя имеет вид

График зависимости M= f(S) для двигательного режима представлен на рис.2.12. В процессе разгона момент двигателя изменяется от пускового M n до максимального момента, который называется критическим моментом M к . Скольжение и скорость двигателя, соответствующие наибольшему (максимальному) моменту, называют критическими и обозначают соответственно S к, w к . Приравняв производную нулю в выражении (2.21), получим значение критического скольжения S k , при котором двигатель развивает максимальный момент:

где Х к =(Х 1 +Х 2 ΄) – реактивное сопротивление двигателя.

Рис.2.12. Естественная механическая характеристика асинхронного электродвигателя Рис.2.13. Механические характеристики асинхронного электродвигателя при изменении напряжения сети

Для двигательного режима S к берется со знаком “плюс”, для сверхсинхронного - со знаком “минус”.

Подставив значение S к (2.22) в выражение (2.21), получим формулы максимального момента:

а) для двигательного режима

б) для сверхсинхронного торможения

(2.24)

Знак “плюс” в равенствах (2.22) и (2.23) относится к двигательному режиму и к торможению противовключением; знак “минус” в формулах (2.21), (2.22) и (2.24) - к сверхсинхронному режиму двигателя, работающего параллельно с сетью (при w>w 0 ).

Как видно из (2.23) и (2.24), максимальный момент двигателя, работающего в режиме сверхсинхронного торможения, будет больше по сравнению с двигательным режимом из-за падения напряжения на R 1 (рис. 2.11).

Если выражение (2.21) разделить на (2.23) и произвести ряд преобразований с учетом уравнения (2.22), можно получить более простое выражение для зависимости M= f(S) :

где коэффициент.

Пренебрегая активным сопротивлением обмотки статора R 1 , т.к. у асинхронных двигателей мощностью более 10 кВт сопротивление R 1 значительно меньше Х к , можно приравнять а ≈ 0 , получаем более удобную и простую для расчетов формулу определения момента двигателя по его скольжению (формула Клосса):

. (2.26) Если в выражение (2.25) вместо текущих значений M и S подставить номинальные значения и обозначить кратность моментов M к /M н через k max , получим упрощенную формулу для определения критического скольжения:

В (2.27) любой результат решения под корнем брать со знаком “+”, ибо при знаке “-” решение данного уравнения не имеет смысла. Уравнения (2.21), (2.23), (2.24), (2.25) и (2.26) являются выражениями, описывающими механическую характеристику асинхронного двигателя (рис. 2.12).

Искусственные механические характеристики асинхронного двигателя можно получить за счет изменения напряжения или частоты тока в питающей сети либо введения добавочных сопротивлений в цепь статора или ротора.

Рассмотрим влияние каждого из названных параметров (U, f, R д) на механические характеристики асинхронного двигателя.

Влияние напряжения питающей сети. Анализ уравнений (2.21) и (2.23) показывает, что изменение напряжения сети влияет на момент двигателя и не влияет на его критическое скольжение. При этом момент, развиваемый двигателем, изменяется пропорционально квадрату напряжения:

М≡ kU 2 , (2.28)

где k – коэффициент, зависящий от параметров двигателя и скольжения.

Механические характеристики асинхронного двигателя при изменении напряжения сети представлены на рис 2.13. В данном случае U н = U 1 >U 2 >U 3 .

Влияние добавочного внешнего активного сопротивления, включенного в цепь статора. Добавочные сопротивления вводят в цепь статора для уменьшения пусковых значений тока и момента (рис.2.14а). Падение напряжения на внешнем сопротивлении является в данном случае функцией тока двигателя. При пуске двигателя, когда величина тока большая, напряжение на обмотках статора снижается.

Рис.2.14. Схема включения (а) и механические характеристики (б) асинхронного двигателя при включении активного сопротивления в цепь статора

При этом согласно уравнениям (2.21), (2.22) и (2.23) изменяются пусковой момент М п , критический момент М к и угловая скорость ω к . Механические характеристики при различных добавочных сопротивлениях в цепи статора представлены на рис.2.14б, где R д2 >R д1 .

Влияние добавочного внешнего сопротивления, включенного в цепь ротора . При включении добавочного сопротивления в цепь ротора двигателя с фазным ротором (рис.2.15а) его критическое скольжение повышается, что объясняется выражением .

Рис.2.15. Схема включения (а) и механические характеристики (б) асинхронного двигателя с фазным ротором при включении добавочного сопротивления в цепь ротора

В выражение (2.23) величина R / 2 не входит, так как эта величина не влияет на М К, поэтому критический момент остается неизменным при любом R / 2 . Механические характеристики асинхронного двигателя с фазным ротором при различных добавочных сопротивлениях в цепи ротора представлены на рис.2.15б.

Влияние частоты тока питающей сети . Изменение частоты тока влияет на величину индуктивного сопротивления X к асинхронного двигателя и, как видно из уравнений (2.18), (2.22), (2.23) и (2.24), оказывает влияние на синхронную угловую скорость w 0 , критическое скольжение S к и критический момент M к . Причем ; ; w 0 ºf , где C 1 , C 2 - коэффициенты, определяемые параметрами двигателя, не зависящими от частоты тока f .

Механические характеристики двигателя при изменении частоты тока f представлены на рис.2.16.

0 ω К1 ω К2 ω К3 ω f H > f 1
Рис.2.16. Механические характеристики асинхронного двигателя при изменении частоты тока питающей сети

Динамической механической характеристикой асинхронного двигателя называется зависимость между мгновенными значениями скорости (скольжения) и момента электрической машины для одного и того же момента времени переходного режима работы.

График динамической механической характеристики асинхронного двигателя можно получить из совместного решения системы дифференциальных уравнений электрического равновесия в статорной и роторной цепях двигателя и одного из уравнения его электромагнитного момента, которые приведены без их вывода:

В системе уравнений (5.35) приняты следующие обозначения:

а

– составляющая вектора напряжения обмотки статора, ориентированная вдоль оси b неподвижной системы координат;

– эквивалентное индуктивное сопротивление обмотки статора, равное индуктивному сопротивлению рассеяния обмотки статора и индуктивному сопротивлению от главного поля;

– эквивалентное индуктивное сопротивление обмотки ротора, приведенное к обмотке статора, равное индуктивному сопротивлению рассеяния обмотки ротора и индуктивному сопротивлению от главного поля;

– индуктивное сопротивление от главного поля (контура намагничивания), создаваемое суммарным действием токов статора;

а неподвижной системы координат;

– составляющая вектора потокосцепления обмотки статора, ориентированная вдоль оси b неподвижной системы координат;

а неподвижной системы координат;

– составляющая вектора потокосцепления обмотки ротора, ориентированная вдоль оси b неподвижной системы координат;

а неподвижной системы координат;

– составляющая вектора тока обмотки ротора, ориентированная вдоль оси b неподвижной системы координат.

Электромеханические процессы в асинхронном электроприводе описываются уравнением движения. Для случая

где – приведенный к валу двигателя момент сопротивления нагрузки; – приведенный к валу двигателя суммарный момент инерции электропривода.

Анализ динамических процессов преобразования энергии в асинхронном двигателе представляет собой сложную задачу в связи с существенной нелинейностью уравнений, описывающих асинхронный двигатель, обусловленной произведением переменных. Поэтому исследование динамических характеристик асинхронного двигателя целесообразно вести с применением средств вычислительной техники.

Совместное решение системы уравнений (5.62) и (5.63) в программной среде MathCAD позволяет рассчитать графики переходных процессов скорости ω и момента М при численных значениях параметров схемы замещения асинхронного двигателя, определенных в примере 5.3.

Так как динамическую механическую характеристику асинхронного двигателя можно получить только по результатам расчетов переходных процессов, го вначале приведем графики переходных процессов скорости (рис. 5.9) и момента (рис. 5.10) при пуске асинхронного двигателя прямым включением в сеть.

Рис. 5.9.

Рис. 5.10.

Рис. 5.11.

Графики и переходных процессов позволяют построить динамическую механическую характеристику асинхронного двигателя (рис. 5.1 I, кривая I) при пуске прямым включением в сеть. Для сравнения на этом же рисунке приведена статическая механическая характеристика – 2, рассчитанная по выражению (5.7) для тех же параметров схемы замещения асинхронного двигателя.

Анализ динамической механической характеристики асинхронного двигателя показывает, что максимальные ударные моменты при пуске превышают номинальный момент Л/н статической механической характеристики более чем в 4,5 раза и могут достичь недопустимо больших по механической прочности значений. Ударные моменты при пуске, и особенно при реверсе асинхронного двигателя, приводят к выходу из строя кинематики производственных механизмов и самого асинхронного двигателя.

Моделирование в программной среде MathCAD позволяет достаточно просто провести исследования динамических механических характеристик асинхронного двигателя. Установлено, что динамическая характеристика определяется не только параметрами схемы замещения асинхронного двигателя, но и параметрами электропривода, такими как эквивалентный момент инерции, момент сопротивленияна валу двигателя. Следовательно, асинхронный двигатель при данных параметрах питающей сети и схемы замещения обладает одной статической и множеством динамических механических характеристик.

Как следует из анализа динамических характеристик рис. 5.9-5.10, переходный процесс пуска короткозамкнутого асинхронного двигателя может иметь колебательный характер не только на начальном, но и на конечном участке, причем скорость двигателя превышает синхронную ω0. На практике колебания угловой скорости и момента двигателя на конечном участке переходного процесса наблюдаются не всегда. Кроме того, имеется большое число производственных механизмов, для которых такие колебания необходимо исключить. Характерный пример – механизмы лебедок и перемещения подъемных кранов. Для таких механизмов выпускаются асинхронные двигатели с мягкими механическими характеристиками или с повышенным скольжением. Установлено, чем мягче рабочий участок механической характеристики асинхронного двигателя и чем больше эквивалентный момент инерции электропривода, тем меньше амплитуда колебаний при выходе на установившуюся скорость и тем быстрее они затухают.

Исследования динамических механических характеристик имеют теоретическое и практическое значение, поскольку, как было показано в разделе 5.1.1, учет только статических механических характеристик может привести к не совсем корректным выводам и к искажению характера динамических нагрузок при пусках асинхронных двигателей. Исследования показывают, что максимальные значения динамического момента могут превышать номинальный момент двигателя при пуске прямым включением в сеть в 2-5 раз и в 4-10 раз при реверсировании двигателя, что необходимо учитывать при разработке и изготовлении электроприводов.

Механической характеристикой двигателя называется зависимость частоты вращения ротора от момента на валу n = f (M2). Так как при нагрузке момент холостого хода мал, то M2 ≈ M и механическая характеристика представляется зависимостью n = f (M). Если учесть взаимосвязь s = (n1 - n) / n1, то механическую характеристику можно получить, представив ее графическую зависимость в координатах n и М (рис. 1).

Рис. 1. Механическая характеристика асинхронного двигателя

Естественная механическая характеристика асинхронного двигателя соответствует основной (паспортной) схеме его включения и номинальным параметрам питающего напряжения. Искусственные характеристики получаются, если включены какие-либо дополнительные элементы: резисторы , реакторы , конденсаторы . При питании двигателя не номинальным напряжением характеристики также отличаются от естественной механической характеристики.

Механические характеристики являются очень удобным и полезным инструментом при анализе статических и динамических режимов электропривода.

Основные точки механической характеристики: критическое сколь-жение и частота, максимальный момент, пусковой момент, номинальный момент.

Механическая характеристика - это зависимость вращающего момента от скольжения, или, иначе говоря, от числа оборотов:

Из выражения видно, что эта зависимость очень сложна, поскольку, как показывают формулы)
и , скольжение входит также в выражения для I 2 и cos ? 2 . Механическая характеристика асинхронного двигателя дается обычно графически

Начальная точка характеристики соответствует n = 0 и s = 1: это первое мгновение пуска двигателя. Величина пускового вращающего момента M n - очень важная характеристика эксплуатационных свойств двигателя. Если M n мал, меньше номинального рабочего момента, двигатель может запускаться только вхолостую или при соответственно сниженной механической нагрузке.

Обозначим символом M np противодействующий (тормозной) момент, создаваемый механической нагрузкой на валу, при которой двигатель пускается. Очевидным условием для возможности запуска двигателя является: M n > M np . Если это условие выполнено, ротор двигателя придет в движение, число оборотов его n будет возрастать, а скольжение s уменьшаться. Как видно из изображения выше, вращающий момент двигателя при этом растет от M n до максимального M m , соответствующего критическому скольжению s kp , следовательно, растет и избыточная располагаемая мощность двигателя, определяемая разностью моментов M и M np .

Чем больше разность между располагаемым моментом двигателя (возможным при данном скольжении по рабочей характеристике) М и противодействующим М np , тем легче режим запуска и тем быстрее двигатель достигает установившейся скорости вращения.


Как показывает механическая характеристика, при некотором числе оборотов (при s = s kp ) располагаемый вращающий момент двигателя достигает максимально возможного для данного двигателя (при данном напряжении U ) значения M т . Далее двигатель продолжает увеличивать скорость вращения, но располагаемый вращающий момент его быстро уменьшается. При каких-то значениях n и s вращающий момент двигателя становится равным противодействующему: пуск двигателя заканчивается, число оборотов его устанавливается на значении, соответствующем соотношению:

Это соотношение является обязательным для всех нагрузочных режимов двигателя, то есть для всех значений M np , не выходящих за пределы максимального располагаемого вращающего момента двигателя М т . В этих пределах двигатель сам автоматически приспосабливается ко всем колебаниям нагрузки: если во время работы двигателя его механическая нагрузка увеличивается, на какое-то мгновение M np станет больше момента, развиваемого двигателем. Обороты двигателя начнут снижаться, а момент увеличиваться.

Скорость вращения установится на новом уровне, отвечающем равенству M и M np . При снижении нагрузки процесс перехода к новому нагрузочному режиму будет обратным.

Если нагрузочный момент M np превысит М т , двигатель сразу остановится, так как с дальнейшим уменьшением оборотов вращающий момент двигателя уменьшается.

Поэтому максимальный момент двигателя М т называется еще опрокидывающим или критическим моментом.

Если в формулу момента подставить:

то получим:

Взяв первую производную от М по и приравняв ее к нулю, найдем, что максимальное значение вращающего момента наступает при условии:

то есть при таком скольжении s = s kp , при котором активное сопротивление ротора равно индуктивному сопротивлению

Значения s kp у большинства асинхронных двигателей лежат в пределах 10 - 25%.

Если в написанную выше формулу момента вместо активного сопротивления r 2 подставить индуктивное по формуле

Максимальный вращающий момент асинхронного двигателя пропорционален квадрату магнитного потока (а значит, и квадрату напряжения) и обратно пропорционален индуктивности рассеяния обмотки ротора.

При постоянстве напряжения, подводимого к двигателю, его поток Ф остается практически неизменным.

Индуктивность рассеяния роторной цепи тоже практически постоянна. Поэтому при изменении активного сопротивления в цепи ротора максимальное значение вращающего момента M т изменяться не будет, но будет наступать при разных скольжениях (с увеличением активного сопротивления ротора - при больших значениях скольжения).

Очевидно, что максимум возможной нагрузки двигателя определяется значением его M т . Рабочая часть характеристики двигателя лежит в узком диапазоне чисел оборотов от n , соответствующего M т , до. При n = n 1 (конечная точка характеристики) М = 0, так как при синхронной скорости ротора s = 0 и I 2 = 0.

Номинальный вращающий момент, определяющий значение паспортной мощности двигателя, принимается обычно равным 0,4 - 0,6 от M т . Таким образом, асинхронные двигатели допускают кратковременные перегрузки в 2 - 2,5 раза.

Основным параметром, характеризующим режим работы асинхронного двигателя, является скольжение s - относительная разность частоты вращения ротора двигателя n и его поля n о: s = (n o - n) / n o .

Область механической характеристики, соответствующая 0 ≤ s ≤ 1 - область двигательных режимов, причем при s < s кр работа двигателя устойчива, при s > s кр - неустойчива. При s < 0 и s > 1 момент двигателя направлен против направления вращения его ротора (соответственно рекуперативное торможение и торможение противовключением).

Устойчивый участок механической характеристики двигателя часто описывается формулой Клосса , подстановкой в которую параметров номинального режима можно определить критическое скольжение s кр:

,

где: λ = M kp / M н - перегрузочная способность двигателя.

Механическая характеристика по данным справочника или каталога приближенно может быть построена по четырем точкам (рис. 7.1):

Точка 1 - идеальный холостой ход, n = n o = 60 f / p, М = 0, где: р - число пар полюсов магнитного поля двигателя;

Точка 2 - номинальный, режим: n = n н, М = М н = 9550 P н / n н, где P н - номинальная мощность двигателя в кВт;

Точка 3 - критический режим: n = n кр, М = М кр =λ М н;

Точка 4 - режим пуска: n = 0, М = М пуск = β М н.

При анализе работы двигателя в диапазоне нагрузок до М н и несколько больше устойчивый участок механической характеристики можно приближенно описать уравнением прямой линии n = n 0 - вМ, где коэффициент “в” легко определяется подстановкой в уравнение параметров номинального режима n н и М н.

Конструкция обмоток статора. Однослойные и двухслойные петле-вые обмотки.

По конструкции катушек обмотки подразделяют на всыпные с мягкими катушками и обмотки с жесткими катушками или полукатушками. Мягкие катушки изготовляют из круглого изолированного провода. Для придания требуемой формы их предварительно наматывают на шаблоны, а затем укладывают в изолированные трапецеидальные пазы (см. рис. 3.4, в , г и 3.5, в ); междуфазовые изоляционные прокладки устанавливают в процессе укладки обмотки. Затем катушки укрепляют в пазах с помощью клиньев или крышек, придают им окончательную форму (формируют лобовые части), осуществляют бандажирование обмотки и ее пропитку. Весь процесс изготовления всыпных обмоток можно полностью механизировать.

Жесткие катушки (полукатушки) изготовляют из прямоугольного изолированного провода. Окончательную форму им придают до укладки в пазы; одновременно на них накладывают корпусную и междуфазовую изоляцию. Затем катушки укладывают в предварительно изолированные открытые или полуоткрытые пазы , укрепляют и подвергают пропитке.

1. Однослойные обмотки - наиболее пригодны для механизированной укладки, так как в этом случае обмотка должна быть концентрической и укладываться в пазы статора обеими сторонами катушки одновременно. Однако применение их приводит к увеличенному расходу обмоточного провода из-за значительной длины лобовых частей. Кроме того, в таких обмотках не представляется возможным выполнить укорочение шага, что приводит к ухудшению формы магнит-ного поля в воздушном зазоре, увеличению добавочных потерь, возникновению провалов в механической характеристике и повышению шума. Однако из-за своей простоты и дешевизны такие обмотки широко применяют в асинхронных двигателях небольшой мощности до 10-15 кВт.

2. Двухслойные обмотки - позволяют выполнить укорочение шага обмотки на любое количество зубцовых делений, благодаря чему улучшается форма магнитного поля, создаваемого обмоткой, и подавляются высшие гармонические в кривой ЭДС. Кроме того, при двухслойных обмотках получается более простая форма лобовых соединений, что упрощает изготовление обмоток. Такие обмотки применяют для двигателей мощностью свыше 100 кВт с жесткими катушками, которые укладывают вручную.

Обмотки статора. Однослойные и двухслойные волновые обмотки

В пазах сердечника статора раз-мещается многофазная обмотка, которая подсоединяется к сети переменного тока. Многофазные симметричные обмотки с числом фаз т включают в себя т фазных обмоток, которые соединяются в звезду или многоугольник. Так, например, в случае трехфазной обмотки статора число фаз т = 3 и обмотки могут соединяться в звезду или треугольник. Между собой обмотки фаз смещены на угол 360/т град; для трехфазной обмотки этот угол равен 120°.

Обмотки фаз выполняются из отдельных катушек, соединенных последовательно, параллельно либо последовательно-параллельно. В данном случае под катушкой подразумеваются несколько последовательно соединенных витков обмотки статора, размещенных в одних и тех же пазах и имеющих общую изоляцию относительно стенок паза. В свою очередь витком считаются два активных (т. е. расположенных в самом сердечнике статора) проводника, уложенных в двух пазах под соседними разноименными полюсами и соединенных друг с другом последовательно. Проводники, расположенные вне сердечника статора и соединяющие активные проводники между собой, называются лобовыми частями обмотки. Прямолинейные части катушек обмоток, уложенные в пазы, называются сторонами катушек или пазовыми частями.

Пазы статора, в которые укладываются обмотки, образуют на внутренней стороне статора так называемые зубцы. Расстояние между центрами двух соседних зубцов сердечника статора, измеренное по его поверхности, обращенной к воздушному зазору, называется зубцовым делением или пазовым делением.

Многослойные цилиндрические катушечные обмотки (рисунок 3) наматываются из круглого провода и состоят из многослойных дисковых катушек, расположенных вдоль стержня. Между катушками (через каждую катушку или через две-три катушки) могут быть оставлены радиальные каналы для охлаждения. Такие обмотки применяются на стороне высшего напряжения при S ст ≤ 335 кВ×А, I ст ≤ 45 А и U л.н ≤ 35 кВ.

Однослойные и двухслойные цилиндрические обмотки (рисунок 4) наматываются из одного или нескольких (до четырех) параллельных прямоугольных проводников и применяются при S ст ≤ 200 кВ×А,I ст ≤ 800 А и U л.н ≤ 6 кВ.

Под механической характеристикой принято понимать зависимость частоты вращения ротора в функции от электромагнитного момента n = f(M). Эту характеристику (рис. 2.15) можно получить, используя зависимость M = f(S) и пересчитав частоту вращения ротора при разных значениях скольжения.

Так как S = (n0 - n) / n0, отсюда n = n0(1 - S). Напомним, что n0 = (60 f) / p – частота вращения магнитного поля.

Участок 1-3 соответствует устойчивой работе, участок 3-4 – неустойчивой работе. Точка 1 соответствует идеальному холостому ходу двигателя, когда n = n0. Точка 2 соответствует номинальному режиму работы двигателя, ее координаты Мн и nн. Точка 3 соответствует критическому моменту Мкр и критической частоте вращения nкр. Точка 4 соответствует пусковому моменту двигателя Мпуск. Механическую характеристику можно рассчитать и построить по паспортным данным. Точка 1:

n0 = (60 f) / p,

где: р – число пар полюсов машины;
f – частота сети.

Точка 2 с координатами nн и Мн. Номинальная частота вращения nн задается в паспорте. Номинальный момент рассчитывается по формуле:

здесь: Рн – номинальная мощность (мощность на валу).

Точка 3 с координатами Мкр nкр. Критический момент рассчитывается по формуле Мкр = Мн λ. Перегрузочная способность λ задается в паспорте двигателя nкр = n0 (1 - Sкр), , Sн = (n0 - nн) / n0 – номинальное скольжение.

Точка 4 имеет координаты n=0 и М=Мпуск. Пусковой момент вычисляют по формуле

Мпуск = Мн λпуск,

где: λпуск – кратность пускового момента задается в паспорте.

Асинхронные двигатели имеют жесткую механическую характеристику, т.к. частота вращения ротора (участок 1–3) мало зависит от нагрузки на валу. Это одно из достоинств этих двигателей.

Асинхронные двигатели (АД) – самый распространенный вид двигателей, т.к. они более просты и надежны в эксплуатации, при равной мощности имеют меньшую массу, габариты и стоимость в сравнении с ДПТ. Схемы включения АД приведены на рис. 2.14.

До недавнего времени АД с короткозамкнутым ротором применялись в нерегулируемых электроприводах. Однако с появлением тиристорных преобразователей частоты (ТПЧ) напряжения, питающего статорные обмотки АД, двигатели с короткозамкнутым ротором начали использоваться в регулируемых электроприводах. В настоящее время в преобразователях частоты применяются силовые транзисторы и программируемые контроллеры. Способ регулирования скорости получил название импульсного и его совершенствование является важнейшим направлением в развитии электропривода.

Рис. 2.14. а) схема включения АД с короткозамкнутым ротором;

б) схема включения АД с фазным ротором.

Уравнение для механической характеристики АД может быть получено на основании схемы замещения АД. Если в этой схеме пренебречь активным сопротивлением статора, то выражение для механической характеристики будет иметь вид:

,

Здесь М к – критический момент; S к - соответствующее ему критическое скольжение; U ф – действующее значение фазного напряжения сети; ω 0 =2πf/p – угловая скорость вращающегося магнитного поля АД (синхронная скорость); f – частота питающего напряжения; p – число пар полюсов АД; х к – индуктивное фазное сопротивление короткого замыкания (определяется из схемы замещения); S=(ω 0 -ω)/ω 0 – скольжение (скорость ротора относительно скорости вращающегося поля); R 2 1 – суммарное активное сопротивление фазы ротора.

Механическая характеристика АД с короткозамкнутым ротором приведена на рис. 2.15.

Рис. 2.15. Механическая характеристика АД с короткозамкнутым ротором.

На ней можно выделить три характерные точки. Координаты первой точки (S=0; ω=ω 0 ; М=0 ). Она соответствует режиму идеального холостого хода, когда скорость ротора равна скорости вращающегося магнитного поля. Координаты второй точки (S=S к; М=М к ). Двигатель работает с максимальным моментом. При М с >М к ротор двигателя будет принудительно остановлен, что для двигателя является режимом короткого замыкания. Поэтому вращающий момент двигателя в этой точке и называется критическим М к . Координаты третьей точки (S=1; ω=0; М=М п ). В этой точке двигатель работает в режиме пуска: скорость ротора ω=0 и на неподвижный ротор действует пусковой момент М п . Участок механической характеристики, расположенный между первой и второй характерными точками, называется рабочим участком. На нем двигатель работает в установившемся режиме. У АД с короткозамкнутым ротором при выполнении условий U=U н и f=f н механическая характеристика называется естественной. В этом случае на рабочем участке характеристики расположена точка, соответствующая номинальному режиму работы двигателя и имеющая координаты (S н; ω н; М н ).


Электромеханическая характеристика АД ω=f(I ф) , которая на рис.2.15 изображена штриховой линией, в отличие от электромеханической характеристики ДПТ, совпадает с механической характеристикой только на ее рабочем участке. Это объясняется тем, во время пуска из-за изменяющейся частоты э.д.с. в обмотке ротора Е 2 изменяется частота тока и соотношение индуктивного и активного сопротивлений обмотки: в начале пуска частота тока большая и индуктивное сопротивление больше активного; с увеличением скорости вращения ротора ω частота тока ротора, а значит и индуктивное сопротивление его обмотки, уменьшается. Поэтому пусковой ток АД в режиме прямого пуска в 5÷7 раз превышает номинальное значение I фн , а пусковой момент М п равен номинальному М н . В отличии от ДПТ, где при пуске необходимо ограничивать пусковой ток и пусковой момент, при пуске АД пусковой ток необходимо ограничивать, а пусковой момент увеличивать. Последнее обстоятельство наиболее важно, поскольку ДПТ с независимым возбуждением запускается при М с <2,5М н , ДПТ с последовательным возбуждением при М с <5М н , а АД при работе на естественной характеристике при М с <М н .

У АД с короткозамкнутым ротором увеличение М п обеспечивается специальной конструкцией обмотки ротора. Паз для обмотки ротора делают глубоким, а саму обмотку располагают в два слоя. При пуске двигателя частота Е 2 и токи ротора большие, что приводит к появлению эффекта вытеснения тока – ток протекает только в верхнем слое обмотки. Поэтому увеличивается сопротивление обмотки и пусковой момент двигателя М П . Его величина может достигать 1,5М н .

У АД с фазным ротором увеличение М П обеспечивается за счет изменения его механической характеристики. Если сопротивление R П , включенное в цепь протекания тока ротора, равно нулю – двигатель работает на естественной характеристике и М П =М Н . При R П >0 увеличивается суммарное активное сопротивление фазы ротора R 2 1 . Критическое же скольжение S к по мере увеличения R 2 1 тоже увеличивается. Вследствие этого у АД с фазным ротором введение R П в цепь протекания тока ротора приводит к смещению М К в сторону больших скольжений. При S К =1 М П =М К. Механические характеристики АД с фазным ротором при R П >0 называются искусственными или реостатными. Они приведены на рис. 2.16.

© ru-opel.ru, 2024
Автомобильный портал