Как можно автомобильной динамо витриной электричество создать. Обрывки поповской жизни. Какая дистанция должна быть между группами велосипедистов, движущихся в колонне

23.10.2023

Всем знакома ситуация - ждешь важный звонок и вот невезуха, аккумулятор телефона разрядился, а вы на улице. Сегодня на рынке конечно можно найти альтернативные зарядные устройства, в частности на солнечных батарейках. Но как правило, солнечные батареи имеют низкий КПД (не более 15-17%) и не успевают заряжать мобильный телефон, а иногда процесс зарядки занимает до 6 часов.

Можно конечно использовать зарядные устройства от одной пальчиковой батарейки, но как правило такие девайсы предназначены только для подзарядки, и батарейка быстро разряжается.

В итоге было решено собрать компактное зарядное устройство со встроенным генератором постоянного тока. Известно, что для зарядки маломощных автономных устройств (мобильный телефон, приемники, плееры и т.п.) нужно иметь рабочее напряжение не менее 4.5-4.8 вольт, следовательно нужно применить соответствующие аккумуляторы, но они занимают немало места, поэтому было решено использовать DC-DC преобразователь напряжения 1,5-6 вольт. Преобразователь был использован уже готовый, от зарядного устройства на одной батарейке (куплено за 130 рублей). Преобразователь достаточно компактный и имеет высокий кпд ниже параметры преобразователя.

Входное напряжение – 1.2-1.7 вольт
Ток потребления - до 2 ампер
Выходное напряжение - 5,5 вольт
Выходной ток - до 500 мА
Дроссель удобно мотать на кольце от энергосберегающей лампы, содержит 9 витков провода 0.3мм

Суть работы устройства достаточно проста - генератор вращается, заряжает встроенный аккумулятор, при подключении нагрузки (в нашем случае телефон) на выход преобразователя, последний включается и заряжает его. В процесс зарядки можно подзарядить резервный источник, вращением генератора.

В качестве генератора использовался электродвигатель от кассетного плеера. При 2500 об/мин генератор способен дать до 8 вольт напряжения при токе до 850 мА! Согласитесь немало для такого малыша.

Для того, чтобы обеспечить нужное число оборотов, был использован редуктор. К счастью нашлась старая игрушка со встроенным редуктором, число передач всего 2, но этого хватит для нормальной зарядки резервного аккумулятора. Такую «коробку» передач можно изготовить от дисковода ненужного двд проигрывателя или компьютера, там есть все необходимое, главное обеспечить генератору более 300 об/мин, при таких оборотах он свободно выдает 2 -2.5 вольт, что вполне хватает для зарядки резервного источника.

В качестве резервного источника использовалась одна банка никель металл гибридного аккумулятора с напряжением 1.2 вольт, емкостью 1200 мА, хотя можно использовать аккумуляторы с любой емкостью. На плюс генератора необходимо подключить диод в прямом направлении, чтобы предотвратить подачу обратного напряжения на генератор, в противном случае последний будет работать как электродвигатель.

Основой является высококачественный DC-DC преобразователь на микросхеме ZHDZ5.

Микросхема достаточно распространенная, можно приобрести в радиомагазине за 1$, хотя можно также купить готовую зарядку от батарейки всего за 3$.

Особенностью данного преобразователя является то, что он включается только тогда, когда на выход подключена нагрузка, об этом говорилось вначале статьи.007G, он же - MMBR5031LT1, высокочастотный кремниевый NPN транзистор. Сама схема проста и обеспечивает высокий КПД, все компоненты в SMD исполнении, поэтому все так миниатюрно.

Готовое устройство следует дополнить гнездом для подключения кабелей зарядки разных автономных устройств. В итоге получилось достаточно компактное универсальное зарядное устройство, который выручит всегда, независимо от погодных условий и других факторов.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
Микросхема NCP1400A 1 Маркировка: ZHDZ5 В блокнот
Транзистор MMBR5031LT1 1 Маркировка: 007G В блокнот
Диод Шоттки

SS14

1 В блокнот
Конденсатор 70 нФ 1

Озадачились с коллегой по поводу автономных источников питания. Решил изучить рынок. Мои изыскания привожу ниже.

Прошу критику конкретных устройств (кто чем пользуется/пользовался), наверняка есть ещё какие-то устройства, которые я не перечислил, в т.ч. западные аналоги.

Вводная: группа из 2х человек. Требуются автономные источники питания для радиостанций и зарядки аккумуляторов AA и AAA (под разные полезные девайсы).

Что рассматривали:

1. Солнечные батареи подойдут только для тех, у кого их есть где разместить, и много солнца. С собой её не поносишь, не испытав сложностей - чем мощнее -тем больше, и кроме того, она хрупкая, ИМХО.

2. Минигэс - хорошая штука, но делать запруду и её охранять может себе позволить только большая группа.

3. Дизельгенератор - рабочая тема, но только до тех пор, пока есть, что в него залить…

А пока остается следующее - динамомашины или и «генераторы с ручным приводом», но при условии, что сами мы их собирать не будем, все характеристики устройств приведены по ссылкам в тексте:

Электрогенераторы ручного привода ЭГФ-1, ЭГРП-1, ЭГРП-2

ЭГРП-2

ЭГФ-1

У всех на выходе 12 В, различаются по мощности и массе,

К сожалению этот девайс заряжает динамой только свой собственный, встроенный аккумулятор. Для зарядки ак-в АА или ААА нужно его вручную модифицировать или попытаться использовать USB-зарядку.



В 1831 году английский физик Михаил Фарадей открыл очень интересное явление и вывел из него закон электро­магнитной индукции. Сущность электромагнитной индукции заключается в том, что в медном проводе, если его вращать в неоднородном магнитном поле, то-есть между полюсами магнита или электромагнита, возникает электромагнитное поле. Электромагнитное поле возбуждает движение электро­нов, и по проводнику начинает течь электрический ток.
Но откуда же появилось электромагнитное поле и элек­трический ток, спросите вы, если у нас находится только обыкновенная медная проволока, намотанная на металличе­ский стержень?
Дело в том, что металлический стержень обладает маг­нитным свойством. Но пока стержень этот—немагнитный, потому что магнитные частицы расположены в нем неупорядо­ченно, как попало. Если эти магнитные частицы привести в порядок, то-есть расположить согласно магнитным полюсам, то стержень приобретает свойство магнита и будет притяги­вать к себе металлические предметы. Такое упорядочение магнитных сил можно произвести путем намагничивания стержня постоянным магнитом или электрическим током с помощью катушки. Можно это сделать и с помощью силь­ного вращения одного электромагнита вокруг другого.
В стержне электромагнита всегда имеются слабые следы магнетизма, которые возбуждают в обмотках слабый электри­ческий ток. А когда начинают вращать один электромагнит вокруг другого, электромагнит намагничивается еще силь­нее, а усиление магнитных сил увеличивает ток в обмот­ках и т. д. Таким образом при наибольшей скорости вра­щения электромагнита ток в обмотке достигает полной силы. Собранный при помощи специального устройства, называемого коллектором, электрический ток направляется во внешнюю электрическую цепь. Следовательно напряже­ние, даваемое таким устройством, зависит от магнитной способности сердечника, скорости вращения и длины обмот­ки электромагнита. Но практическое применение этого зако­на сначала пошло не по линии создания производителя электроэнергии, а по линии ее потребителя—электромотора.
Вскоре после открытия Фарадеем закона электромагнит­ной индукции, в том же 1831 году, был построен первый прибор, преобразующий электрическую энергию в механи­ческую. Следует заметить, что Фарадей, открыв явление электромагнитной индукции, еще не создал электродвигателя.
Первые изобретатели электродвигателей придерживались при их конструировании принципов работы паровых машин.
Так, один из первых конструкторов электродвигателя—Бур-буз сделал точную копию паровой машины, заменив цилин­дры электромагнитами, а поршни—металлическими якорями. Переключатель напряжения — современный коллектор—также был выполнен в виде золотниковой коробки паровой маши­ны. Такой двигатель представлял собой две пары электро­магнитов, между которыми была установлена стойка с коро­мыслом. На коромысле помещались якоря, и в то же время коромысло было соединено системой рычагов с маховиком. От кулачка маховика шел шток к переключателю в виде зо­лотниковой коробки. При включении тока одна пара электро­магнитов притягивала к себе якорь, приводя в движение рычаги и поворачивая маховик. При притяжении якоря к пер­вой паре электромагнитов, шток переключателя переводил ползун и, разрывая действующую цепь, включал тут же цепь второго электромагнита. Второй якорь притягивался ко вто­рой паре электромагнитов, рычаги перемещались и вращали маховик дальше.
Первые электродвигатели, действовавшие по принципу так называемого возвратно-поступательного движения, были очень слабы и не могли быть практически применены. Но уже в 1834 году русский академик Борис Семенович Якоби, который открыл гальванопластику, построил первый электро­двигатель без возвратно-поступательного движения. В его двигателе рабочая часть, то-есть якорь, совершала враща­тельное движение, как и в современном электромоторе.
Первый электромотор Якоби был очень прост по устрой­ству: над электромагнитами устанавливалась горизонтальная оеь с насаженными на нее деревянными кругами, в которые по окружности были вставлены металлические стержни. На конце оси была прикреплена металлическая звездочка с коли­чеством зубцов, равным количеству металлических стержней якоря. К звездочке приставлялась пружина, которая при вращении якоря поочередно касалась зубцов звездочки и тем самым периодически включала напряжение в обмотку электро­магнита, а последний, поочередно притягивая стержни якоря, вращал его на оси.
Позднее, в 1838 году, Якоби сконструировал электродви­гатель, который сам же практически применил на первой в мире электромоторной лодке. Этот двигатель состоял из 4 электромагнитов статора и 4 электромагнитов ротора. Ввиду того, что Якоби в этом двигателе на роторе-якоре применил тоже электромагниты, мотор обладал уже практической мощностью.
Занимаясь дальнейшими исследованиями и усовершенство­ваниями своего электродвигателя, Якоби заметил, что если, прилагая механическую силу, вращать якорь его электродви­гателя, то в обмотках возникает электрический ток и таким образом электродвигатель из потребителя электроэнергии превращается в ее производителя. Это было новое открытие русского ученого, которое послужило началом создания гене­ратора электрической энергии—динамомашины. Таким обра­зом были намечены пути прямого применения закона электро­магнитной индукции, открытого Фарадеем, о чем уже гово­рилось в начале этого раздела.
Совместно с известным ученым Ленцем, Якоби определил основные законы электрического тока и принципы, на кото­рых действуют электродвигатели.
Эти новые открытия в области применения электричества Фридрих Энгельс определил так: „…Это колоссальная рево­люция. Паровая машина научила нас превращать тепло в механическое движение, но использование электричества от­кроет нам путь к тому, чтобы превращать все виды энергии— теплоту, механическое движение, электричество, магнетизм, свет—одну в другую и обратно и применять их в промыш­ленности (Маркс и Энгельс, соч., т. XXVII, стр. 289.)
Благодаря усовершенствованию электродвигателей мы уже имеем возможность преобразовывать любые виды энергии одна в другую и с успехом использовать все виды энергии для развития социалистического народного хозяйства.
Исключительно много сделали в области усовершенство­вания электродвигателей и генераторов, а также в области магнитологии русские и, в частности, советские ученые.
С момента зарождения электротехники очень много вни­мания уделялось исследованию магнитных свойств железа, так как оно являлось основным строительным материалом электродвигателей и от его магнитных свойств зависел успех работы нового двигателя. Замечательные исследования рус­ского ученого Александра Григорьевича Столетова, произве­денные в 1872 году, явились законополагающими в этой области. Он установил, что магнитная проницаемость желе­за—величина непостоянная. Она изменяется в зависимости от структуры железа и степени его намагничивания. Выве­денные из этого научные расчеты Столетовым и по настоя­щее время применяются учеными и инженерами при конст­руировании электродвигателей.
Русский электротехник Павел Николаевич Яблочков (1847— 1894), изобретатель первой дуговой электрической лампы, первый построил якорь электромотора барабанного типа^ который является самой совершенной конструкцией. П. Н.Яб­лочков первым в мире построил и альтернатор—генератор переменного тока, который применяется теперь на всех электростанциях.
Революцию в области получения электроэнергии произвел своим изобретением генератора трехфазного тока в 1890 году русский ученый М. О. Доливо-Добровольский.
Большой вклад в развитие магнитологии—науки о магни­тах и магнитных явлениях—внес советский ученый-магни­толог, действительный член Академии наук СССР, лауреат Сталинской премии Николай Сергеевич Акулов. Он открыл важный закон, известный как закон Акулова. Пользуясь этим законом, можно заранее определить, как при намагни­чивании отдельных металлов изменяется их электропровод­ность, теплопроводность и другие качества.

Динамо-машина, или генератор электрического тока, - это устройство, которое преобразует в электрическую энергию другие состояния энергии: тепловую, механическую, химическую. До сегодняшнего дня остаются популярными велосипедные генераторы, питающие фары и задние фонари.

Принцип работы генератора электрического тока

Динамо-машина генерирует электрическую энергию благодаря принципу электромагнитной индукции. Обычно такое устройство конвертирует именно механические воздействия прямо в электрические импульсы. В его составе - ротор (открытая проволочная обмотка) и статор, в котором расположены полюса магнита. Ротор, не прекращая движения, все время вращается в силовом магнитном поле, что неизбежно приводит к возникновению тока в обмотке.
Схему своего устройства динамо-машина представляет следующую. Вращающийся проводник, или ротор, пересекает магнитное поле и в нем генерируется ток. Концы ротора подведены к кольцу (коллектор), через них и прижимные щётки ток перемещается в электрическую сеть.

Электрический ток в динамо-машине

Образующийся ток в проводнике будет иметь наибольшее значение при условии, если ротор располагается перпендикулярно магнитным линям. Чем больше поворот проводника, тем сила тока будет меньше. И наоборот. То есть, процесс вращения проводника в магнитном поле вынуждает генерируемый электрический ток менять направление за один оборот ротора два раза. Благодаря этому свойству такой род тока стали называть переменным.
Динамо-машина для выработки постоянного тока построена на таком же принципе, как и для переменного тока. Разницу можно заметить лишь в деталях, когда концы металлического провода закрепляют не к кольцам, а подсоединяют к полукольцам. Такие полукольца обязательно изолируются между собой, что при вращении проводника делает возможным контактировать со щёткой переменно то одно полукольцо, то другое. Значит, в щётки вырабатываемый ток будет поступать исключительно в одном направлении, одним словом - ток будет постоянным.

Как собрать динамо-машину?


Динамо-машина своими руками собирается быстро. Основанием для будущего генератора будет служить деревянная доска толщиной около 30 мм и площадью 150 на 200 мм. Двумя шурупами на неё крепится корпус так, чтобы электромагниты располагались по горизонтали, один против другого. Затем, сквозь прикреплённый к корпусу подшипник продевается ось якоря, который закрепляется на своём месте между электромагнитами. С внутренней стороны подшипниковой стойки продевают щётки, вставляют второй конец оси якоря. На этом конце закрепляют коллектор.
Перед прикреплением подшипниковой стойки к основанию, якорь нужно выровнять таким образом, чтобы его вращение между электромагнитами не задевало их. Щётки должны располагаться поперёк башмаков электромагнитов и закрепляться на подшипнике. На свободном конце ротора прикрепляется небольшой шкив.
Электромонтаж устройства заключается в соединении концов обмоток для электромагнитов со щётками. Также к ним соединяют отрезки гибкого провода для сообщения устройства с внешней цепью.

Генератор и велосипед

Свою мощность динамо-машина для велосипеда демонстрирует в зависимости от скорости вращения. Например,
недостаточно быстрое вращение или остановка велосипеда прекращает питать фонарь или иное устройство. Но при высокой скорости лампочки способны перегореть раньше срока выработки ресурса.
Различают несколько разновидностей велосипедных электрических генераторов:
Втулочный тип встраивается во втулку колеса. Конструктивно состоит из статичного сердечника на оси и обращающегося многополюсного магнита в форме кольца. Их стоимость больше, она компенсируется бесшумной работой и эффективностью.
Бутылочный тип наиболее популярный. Схожее с формой бутылки устройство оснащено небольшим колёсиком, что приводится в движение посредством трения о боковину резиновой покрышки колеса.

Кареточный генератор устанавливается рядом с кареточным стаканом, ниже перьев рамы. Движение подпружиненного ролика осуществляется благодаря трению о протектор покрышки. Следует упомянуть, что кареточная и бутылочная динамо машина перестают работать, попадая в мокрые условия.

Я сделал этот фрикционный велогенератор для велосипеда, чтобы питать фонарик и задние лампочки. Идею и много информации для этого проекта педального генератора я нашел в интернете.



Недавно я купил велосипед, для того, чтобы ездить на работу и по городу, и решил, что ради безопасности мне нужна подсветка. Мой передний фонарь питался от двух батареек АА, а задняя лампочка от 2 батареек ААА, в инструкции было сказано, что передний свет будет работать 4 часа, а задний — 20 часов в режиме мигания.

Хотя это и неплохие показатели, но все же требуют некоторого внимания, чтобы батарейки не сели в неподходящий момент. Я купил этот байк за его простоту, единственная скорость означает, что я могу просто сесть и поехать, но постоянная замена батарей становится дорогой и усложняет его использование. Добавив динамку для велосипеда, я могу подпитывать батарейки прямо во время езды.

Шаг 1: Собираем запчасти





Если вы хотите собрать динамо машину своими руками, то вам понадобится несколько вещей. Вот их список:

Электроника:

  1. 1x шаговый двигатель — я достал свой из старого принтера
  2. 8 диодов — я использовал персональную силовую установку использовала 1N4001
  3. 1x Регулятор напряжения — LM317T
  4. 1x Макетная плата с печатная платой
  5. 2х резистора — на 150 Ом и на 220 Ом
  6. 1x радиатор
  7. 1x Разъем для батареи
  8. Цельная проволока
  9. Изоляционная лента

Механические части:

  • 1x держатель для велосипедного отражателя — я снял его с велосипеда, когда подключал свет.
  • Алюминиевая угловая заготовка, вам понадобится кусок длиной примерно 15 см
  • Маленькие гайки и болты — я использовал винты от принтера и некоторые другие б/у детали
  • Маленькое резиновое колесо — прикрепляется к шаговому двигателю и трется о колесо при его вращении.

Инструменты:

  • Дремель — он не совсем необходим, но делает вашу жизнь намного проще
  • Сверла и биты
  • Напильник
  • Отвертки, гаечные ключи
  • Макетная плата для тестирования схемы до того, как вы поставите всё на велосипед.
  • Мультиметр

Шаг 2: Создаём схему







Показать еще 10 изображений











Давайте сделаем схему динамомашины для велосипеда. Неплохой идеей является проверить все перед тем, как спаять все вместе, поэтому сначала я собрал всю схему на макетной плате без припоя. Я начал с разъема двигателя и диодов. Я распаял разъем от печатной платы принтера. Размещение диодов в такой ориентации изменяет поступающий от двигателя переменный ток, на постоянный ток (выпрямляет его).

Шаговый двигатель имеет две катушки, и вам необходимо убедиться, что каждая катушка подключена к одному набору диодных групп. Чтобы узнать, какие провода от двигателя подключены к одной и той же катушке, вам просто нужно проверить контакт между проводами. Два провода связаны с первой катушкой, и два со второй катушкой.

Как только схема будет собрана на макетной плате без припоя — проверьте ее. Мой мотор вырабатывал до 30 вольт при нормальной езде на велосипеде. Это 24-вольтный шаговый двигатель, так что его эффективность кажется мне разумной.

При установленном регуляторе напряжения выходное напряжение составляло 3,10 вольт. Резисторы контролируют выходное напряжение, и я выбрал варианты на 150 и 220 Ом для получения 3,08 вольт. Проверьте этот калькулятор напряжения LM317 , чтобы увидеть, как я рассчитал свои показатели.

Теперь всё нужно спаять на печатной плате. Чтобы сделать аккуратные соединения, я использовал маленький калибровочный припой. Он быстрее нагревается и обеспечивает лучшее соединение.

В файле.Pdf вы найдёте, как все связано на печатной плате. Изогнутые линии — это провода, а короткие черные прямые линии – это то, где вам нужно спаять перемычки.

Файлы
Файлы

Шаг 3: Установка мотора






Крепление двигателя было выполнено из алюминиевого уголка и кронштейна отражателя. Чтобы смонтировать двигатель, в алюминии были просверлены отверстия. Затем, чтобы освободить место для колеса, была вырезана одна сторона угла.

Колесо было прикреплено путем наматывания изоленты вокруг вала двигателя до тех пор, пока соединение не будет достаточно плотным, чтобы надеть колесо прямо на изоленту. Этот метод неплохо работает, но в будущем его нужно доработать.

Как только мотор и колесо были присоединены к алюминию, я нашел на раме подходящее место, чтобы все установить. Я прикрепил заготовку к трубке сиденья. Рама моего велосипеда — 61 см, поэтому площадь, на которой установлен генератор, довольно велика по сравнению с велосипедами меньшего размера. Просто найдите на своем велосипеде лучшее место для установки генератора.

После того, как я нашел подходящее место, я сделал отметки под алюминиевый кронштейн с установленным кронштейном отражателя, чтобы его можно было обрезать по нужному размеру. Затем я просверлили отверстия в кронштейне и алюминии, и смонтировал конструкцию на байке.

Я закончил сборку велосипедного генератора на 12 вольт, прикрепив двумя стойками проектную коробку к алюминиевому креплению.

Шаг 4: Подцепляем провода





Динамомашина для велосипеда собрана, теперь все что нужно – просто подключить провода к лампочкам. Я протолкнул концы проводов за клеммами аккумулятора к передней фаре, затем просверлил отверстие в её корпусе, чтобы пропустить провода внутрь. Затем провода были подключены к разъему аккумулятора. В проектной коробке также нужно будет сделать отверстия для проводов.

© ru-opel.ru, 2024
Автомобильный портал