Электродвигатель постоянного тока с последовательным возбуждением. Дпт последовательного возбуждения. Видео на тему

13.06.2021

Двигатели постоянного тока в зависимости от способов их воз­буждения, как уже отмечалось, делятся на двигатели с независимым , параллельным (шунтовым), последовательным (сериесным) и смешанным (компаундным) возбуждением.

Двигатели независимого возбуждения , требуют два источника питания (рис.11.9,а). Один из них необходим для питания обмотки якоря (выводы Я1 и Я2 ), а другой - для создания тока в обмотке возбуждения (выводы обмотки Ш1 и Ш2 ). Дополнительное сопротивление в цепи обмотки якоря необходимо для уменьшения пускового тока двигателя в момент его включения.

С независимым возбуждением выполняются в основном мощные электрические двигатели с целью более удобного и экономичного регулирования тока возбуждения. Сечение провода обмотки возбуждения определяется в зависимости от напряжения ее источника питания. Особенностью этих машин является независимость тока возбуждения, а соответственно и основного магнитного потока, от нагрузки на валу двигателя.

Двигатели с независимым возбуждением по своим характеристикам практически совпадают с двигателями параллельного возбуждения.

Двигатели параллельного возбуждения включаются в соответствии со схемой, показанной на рис.11.9,б. Зажимы Я1 и Я2 относятся к обмотке якоря, а зажимы Ш1 иШ2 - к обмотке возбуждения (к шунтовой обмотке). Переменные сопротивления и предназначены соответственно для изменения тока в обмотке якоря и в обмотке возбуждения. Обмотка возбуждения этого двигателя выполняется из большого количества витков медного провода сравнительно малого сечения и имеет значительное сопротивление. Это позволяет подключать ее на полное напряжение сети, указанное в паспортных данных.

Особенностью двигателей этого типа является то, что при их работе запрещается отсоединять обмотку возбуждения от якорной цепи . В противном случае при размыкании обмотки возбуждения в ней появится недопустимое значение ЭДС, которое может привести к выходу из строя двигателя и к поражению обслуживающего персонала. По той же причине нельзя размыкать обмотку возбуждения и при выключении двигателя, когда его вращение еще не прекратилось.

С увеличением частоты вращения добавочное (дополнительное) сопротивление Rд в цепи якоря следует уменьшать, а при достижении установившейся частоты вращения – вывести полностью.

Рис.11.9. Виды возбуждения машин постоянного тока,

а - независимого возбуждения, б - параллельного возбуждения,

в - последовательного возбуждения, г - смешанного возбуждения.

ОВШ - обмотка возбуждения шунтовая, ОВС - обмотка возбуждения сериесная," ОВН - обмотка независимого возбуждения, Rд -дополнительное сопротивление в цепи обмотки якоря, Rв- дополнительное сопротивление в цепи обмотки возбуждения.

Отсутствие дополнительного сопротивления в обмотке якоря в момент пуска двигателя может привести к появлению большого пускового тока, превышающего номинальный ток якоря в 10...40 раз .

Важным свойством двигателя параллельного возбуждения служит практически постоянная его частота вращения при изменении нагрузки на валу якоря. Так при изменении нагрузки от холостого хода до номинального значения частота вращения уменьшается всего лишь на (2.. 8)% .

Второй особенностью этих двигателей служит экономичное регулирование частоты вращения, при котором отношение наибольшей скорости к наименьшей может составлять 2:1 , а при специальном исполнении двигателя - 6:1 . Минимальная частота вращения ограничивается насыщением магнитной цепи, которое не позволяет уже увеличивать магнитный поток машины, а верхний предел частоты вращения определяется устойчивостью машины - при значительном ослаблении магнитного потока двигатель может пойти «вразнос» .

Двигатели последовательного возбуждения (сериесные) включаются по схеме, (рис.11.9, в). Выводы С1 и С2 соответствуют сериесной (последовательной) обмотке возбуждения. Она выполняется из сравнительно малого числа витков в основном медного провода большого сечения. Обмотка возбуждения соединяется последовательно с обмоткой якоря . Дополнительное сопротивление в цепи обмоток якоря и возбуждения позволяет уменьшить пусковой ток и производить регулирование частоты вращения двигателя. В момент включения двигателя оно должно иметь такую величину, при которой пусковой ток будет составлять (1,5...2,5)Iн . После достижения двигателем установившейся частоты вращения дополнительное сопротивление выводится, то есть устанавливается равным нулю.

Эти двигатели при пуске развивают большие пусковые моменты вращения и должны запускаться при нагрузке не менее 25% ее номинального значения. Включение двигателя при меньшей мощности на его валу и тем более в режиме холостого хода не допускается . В противном случае двигатель может развить недопустимо большие обороты, что вызовет выход его из строя . Двигатели этого типа широко применяются в транспортных и подъемных механизмах, в которых необходимо изменять частоту вращения в широких пределах.

Двигатели смешанного возбуждения (компаундные), занимают промежуточное положение между двигателями параллельного и последовательного возбуждения (рис.11.9, г). Большая принадлежность их к тому или другому виду зависит от соотношения частей основного потока возбуждения, создаваемых параллельной или последовательной обмотками возбуждения. В момент включения двигателя для уменьшения пускового тока в цепь обмотки якоря включается дополнительное сопротивление . Этот двигатель обладает хорошими тяговыми характеристиками и может работать в режиме холостого хода.

Прямое (безреостатаное) включение двигателей постоянного тока всех видов возбуждения допускается мощностью не более одного киловатта.

Обозначение машин постоянного тока

В настоящее время наиболее широкое распространение получили машины постоянного тока общего назначения серии и наиболее новой серии 4П. Кроме этих серий выпускаются двигатели для крановых, экскаваторных, металлургических и других приводов серии Д. Изготавливаются двигатели и специализированных серий .

Двигатели серий и подразделяются по оси вращения, как это принято для асинхронных двигателей переменного тока серии. Машины серии имеют 11 габаритов, отличающихся по высоте вращения оси от 90 до 315 мм. Диапазон мощностей машин этой серии составляет от 0,13 до 200 кВт для электрических двигателей и от 0,37 до 180 кВт для генераторов. Двигатели серий 2П и 4П рассчитываются на напряжение 110, 220, 340 и 440 В. Их номинальные частоты вращения составляют 750, 1000, 1500,2200 и 3000 об/мин.

Каждый из 11 габаритов машин серии имеет станины двух длин (М и L ).

Электрические машины серии имеют лучшие некоторые технико - экономические показатели по сравнению с серией . трудоемкость изготовления серии по сравнению с снижена в 2,5...3 раза. При этом расход меди снижается на 25...30 %. По ряду конструктивных особенностей, в том числе по способу охлаждения, по защите от атмосферных воздействий, по использованию отдельных деталей и узлов машины серии унифицированы с асинхронными двигателями серии иАИ .

Обозначение машин постоянного тока (как генераторов, так и двигателей) представляется следующим образом:

ПХ1Х2ХЗХ4 ,

где - серия машины постоянного тока;

XI - исполнение по типу защиты: Н - защищенное с само­вентиляцией, Ф - защищенное с независимой вентиля­цией, Б - закрытое с естественным охлаждением, О - закрытое с обдувом от постороннего вентилятора;

Х2 - высота оси вращения (двухзначное или трехзначное число) в мм;

ХЗ - условная длина статора: М - первая, L - вторая, Г - с тахогенератором;

В качестве примера можно привести обозначение двигателя 2ПН112МГУ - двигатель постоянного тока серии , защищенного исполнения с самовентиляцией Н ,112 высота оси вращения в мм, первый размер статораМ , укомплектован тахогенератором Г , используется для умеренного климатаУ .

По мощностям электрические машины постоянного тока условно могут быть подразделены на следующие группы :

Микромашины ………………………...меньше 100 Вт,

Мелкие машины ………………………от 100 до 1000 Вт,

Машины малой мощности…………..от 1 до 10 кВт,

Машины средней мощности………..от 10 до 100 кВт,

Крупные машины……………………..от 100 до 1000 кВт,

Машины большой мощность……….более 1000 кВт.

По номинальным напряжениям электрические машины подразделяются условно следующим образом:

Низкого напряжения…………….меньше 100 В,

Среднего напряжения ………….от 100 до 1000 В,

Высокого напряжения……………выше 1000В.

По частоте вращения машины постоянного тока могут быть представлены как:

Тихоходные…………….менее 250 об/мин.,

Средней скорости………от 250 до 1000 об/мин.,

Быстроходные………….от 1000 до 3000 об/мин.

Сверхбыстроходные…..выше 3000 об/мин.

Задание и методика выполнения работы.

1.Изучить устройство и назначение отдельных частей электри­ческих машин постоянного тока.

2.Определить выводы машины постоянного тока, относящиеся к обмотке якоря и к обмотке возбуждения.

Выводы, соответствующие той или иной обмотке, могут быть определены мегомметром, омметром или с помощью электрической лампочки. При использовании мегомметра один его конец присоединяется к одному из выводов обмоток, а другим поочередно касаются к остальным. Измеренное сопротивление, равное нулю, укажет на соответствие двух выводов одной обмотки.

3.Распознать по выводам обмотку якоря и обмотку возбуждения. Определить вид обмотки возбуждения (параллельного возбуждения или последовательного).

Этот опыт можно осуществить с помощью электрической лампочки, подключаемой последовательно с обмотками Постоянное напряжение следует подавать плавно, постепенно повышая его до указанного номинального значения в паспорте машины.

С учетом малого сопротивления якорной обмотки и обмотки последовательного возбуждения лампочка загорится ярко, а их сопротивления, измеренные мегомметром (или омметром) будут практически равны нулю.

Лампочка, соединенная последовательно с параллельной обмоткой возбуждения, будет гореть тускло. Значение сопротивления параллельной обмоткой возбуждения должно находиться в пределах 0,3...0,5 кОм .

Выводы якорной обмотки можно распознать путем присоединения одного конца мегомметра к щеткам, касаясь при этом другим его концом к выводам обмоток на щитке электрической машины.

Выводы обмоток электрической машины следует обозначить на изображенной в отчете условной этикетке выводов.

Измерить сопротивления обмоток и сопротивление изоляции. Сопротивление обмоток можно измерить по схеме амперметра и вольтметра. Сопротивление изоляции между обмотками и обмотками относительно корпуса проверяется мегомметром, рассчитанным на напряжение 1 кВ. Сопротивление изоляции между обмоткой якоря и обмоткой возбуждения и между ними и корпусом должно быть не ниже 0,5 МОм . Данные замеров отобразить в отчете.

Изобразить условно в поперечном разрезе главные полюсы с обмоткой возбуждения и якорь с витками обмотки, находящимися под полюсами (подобно рис.11.10). Самостоятельно принять направление тока в обмотках возбуждения и якоря. Указать при этих условиях направление вращения двигателя.

Рис. 11.10. Двухполюсная машина постоянного тока:

1 - станина; 2 -якорь; 3 - главные полюсы; 4 - об­мотка возбуждения; 5 - полюсные наконечники; 6 - обмотка якоря; 7 - коллектор; Ф - основной магнитный поток; F - сила, действующая на проводники обмотки якоря.

Контрольные вопросы и задания для самостоятельной подготовки

1: Объяснить устройство и принцип действия двигателя и гене­ратора постоянного тока.

2. Пояснить назначение коллектора машин постоянного тока.

3.Дать понятие полюсного деления и привести выражение для его определения.

4.Назвать основные виды обмоток, применяемых в машинах постоянного тока, и знать способы их выполнения.

5.Указать основные достоинства двигателей параллельного воз­буждения.

6.Каковы конструктивные особенности обмотки параллельного возбуждения по сравнению с обмоткой последовательного возбуждения?

7.В чем особенность пуска двигателей постоянного тока после­довательного возбуждения?

8.Сколько параллельных ветвей имеют простая волновая и простая петлевая обмотки машин постоянного тока?

9.Как обозначаются машины постоянного тока? Привести пример обозначения.

10.Какой величины допускается сопротивление изоляции между обмотками машин постоянного тока и между обмотками и корпусом?

11.Какой величины может достигнуть ток в момент пуска двигателя при отсутствии дополнительного сопротивления в цепи обмотки якоря?

12.Какой величины допускается пусковой ток двигателя?

13.В каких случаях допускается пуск двигателя постоянного тока без дополнительного сопротивления в цепи обмотки якоря?

14.За счет чего можно изменить ЭДС генератора независимого возбуждения?

15.Каково назначение дополнительных полюсов машины постоянного тока?

16.При каких нагрузках допускается включение двигателя пос­ледовательного возбуждения?

17.Чем определяется величина основного магнитного пото­ка?

18.Написать выражения ЭДС генератора и момента вращения двигателя. Дать понятие входящих в них составляющих.


ЛАБОРАТОРНАЯ РАБОТА 12.

В двигателе последовательного возбуждения, который иногда называют сериесным, обмотка возбуждения включена последовательно с обмоткой якоря (рис. 1). Для такого двигателя справедливо равенство I в =I a =I, следовательно, его магнитный поток Ф зависит от нагрузки Ф=f(I a). В этом главная особенность двигателя последовательного возбуждения и она определяет его свойства.

Рис. 1 — Схема электродвигателя последовательного возбуждения

Скоростная характеристика представляет зависимость n=f(I a) при U=U н. Она не может быть точно выражена аналитически во всем диапазоне изменения нагрузки от холостого хода до номинальной из-за отсутствия прямой пропорциональной зависимости между I a и Ф. Приняв допущение Ф=кI a , запишем аналитическую зависимость скоростной характеристики в виде

При увеличении тока нагрузки гиперболический характер скоростной характеристики нарушается и приближается к линейному, так как при насыщении магнитной цепи машины с увеличением тока I a магнитный поток остается практически постоянным (рис. 2). Крутизна характеристики зависит от величины?r.

Рис. 2 — Скоростные характеристики двигателя последовательного возбуждения

Таким образом, скорость сериесного двигателя резко изменяется с изменением нагрузки и такая характеристика называется «мягкой».

При малых нагрузках (до 0,25 I н) скорость двигателя после­довательного возбуждения может возрасти до опасных пределов (двигатель идет «вразнос»), поэтому работа таких двигателей на холостом ходу не допускается.

Моментная характеристика — это зависимость M=f(I a) при U=U н. Если предположить, что магнитная цепь не насыщена, то Ф=кI a и, следовательно, имеем

М=с м I a Ф=с м кI a 2

Это уравнение квадратичной параболы.

Кривая моментной характе­ристики изображена на рисунке 3.8. По мере увеличения тока I a магнитная система двигателя насыщается, и характеристика постепенно приближается к прямой.

Рис. 3 — Моментная характеристика двигателя последовательного возбуждения

Таким образом, электродвигатель последовательного возбуждения развивает момент, пропорциональный I a 2 , что и определяет главное его преимущество. Так как при пуске I a =(1,5..2)I н, то двигатель последовательного возбуждения развивает значительно больший пусковой момент по сравнению с двигателями параллельного возбуждения, поэтому он широко используется в условиях тяжелых пусков и при возможных перегрузках.

Механическая характеристика представляет собой зависимость n=f(M) при U=U н. Аналитическое выражение этой характеристики может быть получено только в частном случае, когда магнитная цепь машины ненасыщенна и поток Ф пропорционален току якоря I a . Тогда можно записать

Решая совместно уравнения, получаем

т.е. механическая характеристика двигателя последовательного возбуждения, также как и скоростная, имеет гиперболический характер (рис. 4).

Рис. 4 — Механические характеристики двигателя последовательного возбуждения

Характеристика КПД двигателя последовательного возбуждения имеет обычный для электродвигателей вид ().

Естественные скоростная и механическая характеристики, область применения

В двигателях последовательного возбуждения ток якоря одновременно является также током возбуждения: i в = I а = I . Поэтому поток Ф δ изменяется в широких пределах и можно написать, что

(3)
(4)

Скоростная характеристика двигателя [смотрите выражение (2)], представленная на рисунке 1, является мягкой и имеет гиперболический характер. При k Ф = const вид кривой n = f (I ) показан штриховой линией. При малых I скорость двигателя становится недопустимо большой. Поэтому работа двигателей последовательного возбуждения, за исключением самых маленьких, на холостом ходу не допускается, а использование ременной передачи неприемлемо. Обычно минимально допустимая нагрузка P 2 = (0,2 – 0,25) P н.

Естественная характеристика двигателя последовательного возбуждения n = f (M ) в соответствии с соотношением (3) показана на рисунке 3 (кривая 1 ).

Поскольку у двигателей параллельного возбуждения M I , а у двигателей последовательного возбуждения приблизительно M I ² и при пуске допускается I = (1,5 – 2,0) I н, то двигатели последовательного возбуждения развивают значительно больший пусковой момент по сравнению с двигателями параллельного возбуждения. Кроме того, у двигателей параллельного возбуждения n ≈ const, а у двигателей последовательного возбуждения, согласно выражениям (2) и (3), приблизительно (при R а = 0)

n U / I U / √M .

Поэтому у двигателей параллельного возбуждения

P 2 = Ω × M = 2π × n × M M ,

а у двигателей последовательного возбуждения

P 2 = 2π × n × M ∼ √M .

Таким образом, у двигателей последовательного возбуждения при изменении момента нагрузки M ст = M в широких пределах мощность изменяется в меньших пределах, чем у двигателей параллельного возбуждения.

Поэтому для двигателей последовательного возбуждения менее опасны перегрузки по моменту. В связи с этим двигатели последовательного возбуждения имеют существенные преимущества в случае тяжелых условий пуска и изменения момента нагрузки в широких пределах. Они широко применяются для электрической тяги (трамваи, метро, троллейбусы, электровозы и тепловозы на железных дорогах) и в подъемно-транспортных установках.

Рисунок 2. Схемы регулирования скорости вращения двигателя последовательного возбуждения посредством шунтирования обмотки возбуждения (а ), шунтирования якоря (б ) и включения сопротивления в цепь якоря (в )

Отметим, что при повышении скорости вращения двигатель последовательного возбуждения в режим генератора не переходит. На рисунке 1 это очевидно из того, что характеристика n = f (I ) не пересекает оси ординат. Физически это объясняется тем, что при переходе в режим генератора, при заданном направлении вращения и заданной полярности напряжения, направление тока должно измениться на обратное, а направление электродвижущей силы (э. д. с.) E а и полярность полюсов должны сохраняться неизменными, однако последнее при изменении направления тока в обмотке возбуждения невозможно. Поэтому для перевода двигателя последовательного возбуждения в режим генератора необходимо переключить концы обмотки возбуждения.

Регулирование скорости посредством ослабления поля

Регулирование n посредством ослабления поля производится либо путем шунтирования обмотки возбуждения некоторым сопротивлением R ш.в (рисунок 2, а ), либо уменьшением числа включенных в работу витков обмотки возбуждения. В последнем случае должны быть предусмотрены соответствующие выводы из обмотки возбуждения.

Так как сопротивление обмотки возбуждения R в и падение напряжения на нем малы, то R ш.в также должно быть мало. Потери в сопротивлении R ш.в поэтому малы, а суммарные потери на возбуждение при шунтировании даже уменьшаются. Вследствие этого коэффициент полезного действия (к. п. д.) двигателя остается высоким, и такой способ регулирования широко применяется на практике.

При шунтировании обмотки возбуждения ток возбуждения со значения I уменьшается до

и скорость n соответственно увеличивается. Выражения для скоростной и механических характеристик при этом получим, если в равенствах (2) и (3) заменим k Ф на k Ф k о.в, где

представляет собой коэффициент ослабления возбуждения. При регулировании скорости изменение числа витков обмотки возбуждения

k о.в = w в.раб / w в.полн.

На рисунке 3 показаны (кривые 1 , 2 , 3 ) характеристики n = f (M ) для этого случая регулирования скорости при нескольких значениях k о.в (значению k о.в = 1 соответствует естественная характеристика 1 , k о.в = 0,6 – кривая 2 , k о.в = 0,3 – кривая 3 ). Характеристики даны в относительных единицах и соответствуют случаю, когда k Ф = const и R а* = 0,1.

Рисунок 3. Механические характеристики двигателя последовательного возбуждения при разных способах регулирования скорости вращения

Регулирование скорости путем шунтирования якоря

При шунтировании якоря (рисунок 2, б ) ток и поток возбуждения возрастают, а скорость уменьшается. Так как падение напряжения R в × I мало и поэтому можно принять R в ≈ 0, то сопротивление R ш.а практически находится под полным напряжением сети, его значение должно быть значительным, потери в нем будут велики и к. п. д. сильно уменьшится.

Кроме того, шунтирование якоря эффективно тогда, когда магнитная цепь не насыщена. В связи с этим шунтирование якоря на практике используется редко.

На рисунке 3 кривая 4 n = f (M ) при

I ш.а ≈ U / R ш.а = 0,5 I н.

Регулирование скорости включением сопротивления в цепь якоря

Регулирование скорости включением сопротивления в цепь якоря (рисунок 2, в ). Этот способ позволяет регулировать n вниз от номинального значения. Так как одновременно при этом значительно уменьшается к. п. д., то такой способ регулирования находит ограниченное применение.

Выражения для скоростной и механической характеристик в этом случае получим, если в равенствах (2) и (3) заменим R а на R а + R ра. Характеристика n = f (M) для такого способа регулирования скорости при R ра* = 0,5 изображена на рисунке 3 в виде кривой 5 .

Рисунок 4. Параллельное и последовательное включение двигателей последовательного возбуждения для изменения скорости вращения

Регулирование скорости изменением напряжения

Этим способом можно регулировать n вниз от номинального значения с сохранение высокого к. п. д. Рассматриваемый способ регулирования широко применяется в транспортных установках, где на каждой ведущей оси устанавливается отдельный двигатель и регулирование осуществляется путем переключения двигателей с параллельного включения в сеть на последовательное (рисунок 4). На рисунке 3 кривая 6 представляет собой характеристику n = f (M ) для этого случая при U = 0,5U н.

Обмотка возбуждения подключается к независимому источнику. Характеристики двигателя получаются такие же, как у двигателя с постоянными магнитами. Скорость вращения регулируется сопротивлением в цепи якоря. Регулируют ее и реостатом (регулировочным сопротивлением) в цепи обмотки возбуждения, но при чрезмерном уменьшении его величины или при обрыве ток якоря возрастает до опасных значений. Двигатели с независимым возбуждением нельзя запускать на холостом ходу или с малой нагрузкой на валу. Скорость вращения резко увеличится, и двигатель будет поврежден.

Схема независимого возбуждения

Остальные схемы называют схемами с самовозбуждением.

Параллельное возбуждение

Обмотки ротора и возбуждения подключаются параллельно к одному источнику питания. При таком включении ток через обмотку возбуждения в несколько раз меньше, чем через ротор. Характеристики электродвигателей получаются жесткими, позволяющие использовать их для привода станков, вентиляторов.

Регулировка скорости вращения обеспечивается включением реостатов в цепь ротора или последовательно с обмоткой возбуждения.

Схема параллельного возбуждения

Последовательное возбуждение

Обмотка возбуждения включается последовательно с якорной, по ним течет один и тот же ток. Скорость такого двигателя зависит от его нагрузки, его нельзя включать на холостом ходу. Но он обладает хорошими пусковыми характеристиками, поэтому схема с последовательным возбуждением применяется на электрифицированном транспорте.

Схема последовательного возбуждения

Смешанное возбуждение

При этой схеме используются две обмотки возбуждения, расположенные попарно на каждом из полюсов электродвигателя. Их можно подключить так, чтобы потоки их либо складывались, либо вычитались. В результате двигатель может иметь характеристики как у схемы последовательного или параллельного возбуждения.

Схема смешанного возбуждения

Для изменения направления вращения изменяют полярность одной из обмоток возбуждения. Для управления пуском электродвигателя и скоростью его вращения применяют ступенчатое переключение сопротивлений

33. Характеристика дпт с независимым возбуждением.

Двигатель постоянного тока независимого возбуждения (ДПТ НВ) В этом двигателе (рисунок 1) обмотка возбуждения подключена к отдельному источнику питания. В цепь обмотки возбуждения включен регулировочный реостат r рег, а в цепь якоря - добавочный (пусковой) реостат R п. Характерная особенность ДПТ НВ - его ток возбуждения I в не зависит от тока якоря I я так как питание обмотки возбуждения независимое.

Схема двигателя постоянного тока независимого возбуждения (ДПТ НВ)

Рисунок 1

Механическая характеристика двигателя постоянного тока независимого возбуждения (дпт нв)

Уравнение механической характе­ристики двигателя постоянного тока независимого возбуждения имеет вид

где: n 0 - частота вращения вала двигателя при холостом ходе. Δn - изменение частоты вращения двигателя под действием механической нагрузки.

Из этого уравнения следует, что механические характеристики двигателя постоянного тока независимого возбуждения (ДПТ НВ) прямолинейны и пересекают ось ординат в точке холостого хода n 0 (рис 13.13 а), при этом изменение частоты вращения двигателя Δn , обусловленное изменением его механической нагрузки, пропорционально сопротивлению цепи якоря R а =∑R + R доб. Поэтому при наименьшем сопротивлении цепи якоря R а = ∑R, когда R доб = 0 , соответствует наименьший перепад частоты вращения Δn . При этом механическая характеристика становится жесткой (график 1).

Механические характеристики двигателя, полученные при номинальных значениях напряжения на обмотках якоря и возбуждения и при отсутствии добавочных сопротивлений в цепи якоря, называют естественными (график 7).

Если же хотя бы один из перечисленных параметров двигателя изменен (напряжение на обмотках якоря или возбуждения отличаются от номинальных значений, или же изменено сопротивление в цепи якоря введением R доб ), то механиче­ские характеристики называют искусственными .

Искусственные механические характеристики, полученные введением в цепь якоря добавочного сопротивления R доб, называют также реостатными (графики 7, 2 и 3).

При оценке регулировочных свойств двигателей постоянного тока наибольшее значение имеют механические характеристики n = f(M) . При неизменном моменте нагрузки на валу двигателя с увеличением сопротивления резистора R доб частота вращения уменьшается. Сопротивления резистора R доб для получения искусственной механической характеристики, соответствующей требуемой частоте вращения n при заданной нагрузке (обычно номинальной) для двигателей независимого возбуждения:

где U - напряжение питания цепи якоря двигателя, В; I я - ток якоря, соответствующий заданной нагрузке двигателя, А; n - требуемая частота вращения, об/мин; n 0 - частота вращения холостого хода, об/мин.

Частота вращения холостого хода n 0 представляет собой пограничную частоту вращения, при превышении которой двигатель переходит в генераторный режим. Эта частота вращения превышает номинальную n ном на столько, на сколько номинальное напряжение U ном подводимое к цепи якоря, превышает ЭДС якоря Е я ном при номинальной нагрузки двигателя.

На форму механических характеристик двигателя влияет величина основного магнитного потока возбуждения Ф . При уменьшении Ф (при возрастании сопротивления резистора r peг) увеличивается частота вращения холостого хода двигателя n 0 и перепад частоты вращения Δn. Это приводит к значительному изменению жесткости механической характеристики двигателя (рис. 13.13, б). Если же изменять напряжение на обмотке якоря U (при неизменных R доб и R рег), то меняется n 0 , a Δn остается неизменным [см. (13.10)]. В итоге механические характеристики смещаются вдоль оси ординат, оставаясь параллельными друг другу (рис. 13.13, в). Это создает наиболее благоприятные условия при регулировании частоты вращения двигателей путем изменения напряжения U , подводимого к цепи якоря. Такой метод регулирования частоты вращения получил наибольшее распространение еще и благодаря разработке и широкому применению регулируемых тиристорных преобразователей напряжения.

В рассматриваемых двигателях обмотка возбуждения выполняется с малым числом витков, но рассчитана на большие токи. Все особенности этих двигателей связаны с тем, что обмотка возбуждения включается (см. рис. 5.2,в) последовательно с обмоткой якоря, в результате чего ток возбуждения равен току якоря и создаваемый поток Ф пропорционален току якоря:

где а =/(/ я) - нелинейный коэффициент (рис. 5.12).

Нелинейность а связана с формой кривой намагничивания двигателя и размагничивающим действием реакции якоря. Эти факторы проявляются при / я > , / ян (/ ян - номинальный ток якоря). При меньших токах а можно считать величиной постоянной, а при / я > 2/ я н двигатель насыщается и поток мало зависит от тока якоря.


Рис. 5.12.

Основные уравнения двигателя последовательного возбуждения в отличие от уравнений двигателей независимого возбуждения нелинейны, что связано, в первую очередь, с произведением переменных:

При изменении тока в якорной цепи изменяется магнитный поток Ф, наводя в массивных частях магнитопровода машины вихревые токи. Влияние вихревых токов может быть учтено в модели двигателя в виде эквивалентного короткозамкнутого контура, описываемого уравнением

а уравнение для цепи якоря имеет вид:

где w B , w B т - число витков обмотки возбуждения и эквивалентное число витков вихревых токов.

В установившемся режиме

Из (5.22) и (5.26) получим выражения для механической и электромеханической характеристик двигателя постоянного тока последовательного возбуждения:

В первом приближении механическую характеристику двигателя последовательного возбуждения, без учета насыщения магнитной цепи, можно представить в виде гиперболы, не пересекающей ось ординат. Если положить Л я ц = /? я + /? в = 0, то характеристика не будет пересекать и ось абсцисс. Такую характеристику называют идеальной. Реальная естественная характеристика двигателя пересекает ось абсцисс и вследствие насыщения магнитопровода при моментах больше М н спрямляется (рис. 5.13).

Рис. 5.13.

Характерной особенностью характеристик двигателя последовательного возбуждения является отсутствие точки идеального холостого хода. При уменьшении нагрузки скорость возрастает, что может привести к неконтролируемому разгону двигателя. Оставлять такой двигатель без нагрузки нельзя.

Важным достоинством двигателей последовательного возбуждения является большая перегрузочная способность на низких скоростях. При перегрузке по току в 2-2,5 раза двигатель развивает момент 3,0...3,5М н. Это обстоятельство определило широкое использование двигателей последовательного возбуждения в качестве привода электрических транспортных средств, для которых максимальные моменты необходимы при трогании с места.

Изменение направления вращения двигателей последовательного возбуждения не может быть достигнуто изменением полярности питания цепи якоря. В двигателях последовательного возбуждения при реверсировании нужно изменять направление тока в одной части якорной цепи: либо в обмотке якоря, либо в обмотке возбуждения (рис. 5.14).

Рис. 5.14.

Искусственные механические характеристики для регулирования скорости и момента могут быть получены тремя способами:

  • введением добавочного сопротивления в цепь якоря двигателя;
  • изменением питающего двигатель напряжения;
  • шунтированием обмотки якоря добавочным сопротивлением. При введении добавочного сопротивления в цепь якоря жесткость механических характеристик уменьшается и уменьшается пусковой момент. Этот способ используют при пуске двигателей последовательного возбуждения, получающих питание от источников с нерегулируемым напряжением (от контактных проводов и др.) В этом случае (рис. 5.15) необходимое значение пускового момента достигается последовательным закорачиванием секций пускового резистора посредством контакторов К1-КЗ.

Рис. 5.15. Реостатные механические характеристики двигателя последовательного возбуждения: /? 1до -R iao -сопротивления ступеней добавочного резистора в цепи якоря

Наиболее экономичным способом регулирования скорости двигателя последовательного возбуждения является изменение питающего напряжения. Механические характеристики двигателя смещаются вниз параллельно естественной характеристике (рис. 5.16). По форме эти характеристики подобны реостатным механическим характеристикам (см. рис. 5.15), однако, существует принципиальная разница - при регулировании изменением напряжения отсутствуют потери в добавочных резисторах и регулирование производится плавно.

Рис. 5.1

Двигатели последовательного возбуждения при использовании в качестве привода мобильных агрегатов во многих случаях получают питание от контактной сети или других источников питания с постоянным значением напряжения, подаваемого на двигатель, в этом случае регулирование производится посредством широтно-импульсного регулятора напряжения (см. § 3.4). Такая схема показана на рис. 5.17.

Рис. 5.17.

Независимое регулирование потока возбуждения двигателя последовательного возбуждения возможно, если зашунтировать обмотку якоря сопротивлением (рис. 5.18,а). В этом случае ток возбуждения в = я + / ш, т.е. содержит постоянную составляющую, не зависящую от нагрузки двигателя. При этом двигатель приобретает свойства двигателя смешанного возбуждения. Механические характеристики (рис. 5.18,6) приобретают большую жесткость и пересекают ось ординат, что позволяет получить устойчивую пониженную скорость при малых нагрузках на валу двигателя. Существенный недостаток схемы - это большие потери энергии в шунтирующем сопротивлении.


Рис. 5.18.

Для двигателей постоянного тока с последовательным возбуждением характерны два тормозных режима: динамического торможения и противовключения.

Режим динамического торможения возможен в двух случаях. В первом - якорная обмотка замыкается на сопротивление, а обмотка возбуждения питается от сети или другого источника через добавочное сопротивление. Характеристики двигателя в этом случае подобны характеристикам двигателя независимого возбуждения в режиме динамического торможения, (см. рис. 5.9).

Во втором случае, схема которого показана на рис. 5.19, двигатель при отключении контактов КМ и замыкании контактов КВ работает как генератор с самовозбуждением. При переходе из двигательного режима в тормозной необходимо сохранить направление тока в обмотке возбуждения во избежание размагничивания машины, так как при этом машина переходит в режим самовозбуждения. Механические характеристики такого режима представлены на рис. 5.20. Существует граничная скорость со ф, ниже которой самовозбуждение машины не происходит.

Рис.5.19.

Рис. 5.20.

В режиме противовключения в цепь якоря включают добавочное сопротивление. На рис. 5.21 приведены механические характеристики двигателя для двух вариантов противовключения. Характеристика 1 получается, если при работе двигателя в направлении «вперед» В (точка с) изменить направление тока в обмотке возбуждения и ввести в цепь якоря добавочное сопротивление. Двигатель переходит в режим противовключения (точка а) с тормозным моментом М торм.

Рис.5.21.

Если привод работает в режиме спуска груза, когда задача привода подтормаживать механизм подъема при работе в направлении «назад» Н, то двигатель включают в направлении «вперед» В, но с большим добавочным сопротивлением в цепи якоря. Работе привода соответствует точка b на механической характеристике 2. Работа в режиме противовключения сопряжена с большими потерями энергии.

Динамические характеристики двигателя постоянного тока последовательного возбуждения описывает система уравнений, вытекающих из (5.22), (5.23), (5.25) при переходе к операторной форме записи:

В структурной схеме (рис. 5.22) коэффициент а = Д/ я) отражает кривую насыщения машины (см. рис. 5.12). Влиянием вихревых токов пренебрегаем.

Рис. 5.22.

Определить передаточные функции двигателя последовательного возбуждения аналитическим путем достаточно сложно, поэтому анализ переходных процессов производят методом компьютерного моделирования на основе схемы, приведенной на рис. 5.22.

Двигатели постоянного тока смешанного возбуждения имеют две обмотки возбуждения: независимую и последовательную. Вследствие этого их статические и динамические характеристики сочетают характерные свойства двух рассматриваемых ранее видов двигателей постоянного тока. К какому из видов больше принадлежит тот или иной двигатель смешанного возбуждения зависит от соотношения намагничивающих сил, создаваемых каждой из обмоток: в/ п.в = в / п.в я> где в’ п. в - число витков обмотки независимого и последовательного возбуждения.

Исходные уравнения двигателя смешанного возбуждения:

где / в, R B , w b - ток, сопротивление и число витков обмотки независимого возбуждения; L m - взаимная индуктивность обмоток возбуждения.

Уравнения установившегося режима:

Откуда уравнение электромеханической характеристики можно записать в виде:

В большинстве случаев обмотка последовательного возбуждения выполняется на 30...40% МД С, тогда скорость идеального холостого хода превышает номинальную скорость двигателя примерно в 1,5 раза.

© ru-opel.ru, 2024
Автомобильный портал