Выносной активный щуп для осциллографа схема. Щуп Р6100 для осциллографа с высокоомным входом. Активный Щуп Осциллографа

01.07.2023

Добрый день Вам. А нельзя ли воочию увидеть Вашу схемку дифференциального щупа?
Искал активный щуп, думаю попробовать им обмануть свой древний осцилограф ЛО-70, в нём нет открытого входа, наткнулся на Вашу разработку, думаю если "покажется" схемка, сейчас она выглядит в виде "закрытой" картинки, то изготовлю, в жизни пригодится.
С ув. Дмитрий.

Доступ открыл к картинке.

Только только обмануть ЛО-70 вам таким способом не удастся: там между каскадами постоянное напряжение отсекают конденсаторами. Надо всю схему вертикальной развертки менять.

Этот щуп нужен для тестирования блоков питания и электроприводов, когда надо смотреть напряжение в двух гальванически развязанных схемах сразу.

Как в реальности выглядит.

Диф. каскад вставляемый в осциллограф.

Схему вертикальной развертки осциллографа по моей схеме не сделать, так как там выход нужен +-100В. Микросхему ОУ на напряжение питания 200В сложно найти.

В интернете есть готовая схема модернизации.

Ей даже внешний источник напряжения не нужен, достаточно выпрямителя с сглаживающими конденсаторами на обмотку накаливания ламп добавить, что бы получить +-6.3В.

http://www.irls.narod.ru/izm/osc/oscpr01.htm

Спасибо Вам что отвечаете!
Я не так силен в схемотехнике осцилографов, хотя приходил к мысли используя трубку ЛО247 этого осцилографа, переделать под транзисторную схему, но в данный момент этот осцилограф мне нужен на работе, у нас несколько сварочных полуавтоматов типа ВДУ 506 и 1201 и там без осцилографа никак. В скором времени думаю запаять плату радиоконструктора-осцилографа DSO-138, при его успешном запуске возможно возьмусь за реконструкцию ЛО-70, но с элементной базой совсем туго, некоторые радиодетали используемые в схемах переделки попросту не приобрести у нас.
Вы все же применили Аналог Девайс, почему не оставили 318 ? и нужна ли кориектировка схемы под данную МС?
Еще раз спасибо Вам.

Edited at 2016-08-14 17:28 (UTC)

Я же написал, что она быстрее, только стоит очень дорого. Для корректирования надо только убрать конденсаторы по 10пФ, все остальное остается так же. По ногам они совпадают.

На lm318 я для работы делал, она тоже работает.

Для DSO-138 я не вижу смысла в использовании такого щупа, так как у него только один вход.

Тогда прошу прошения - возможно я недопонял, диф.щуп ведь подключается к однолучевому осцилогафу или к двухлучевому? По схеме мне кажется в вывода 6 МС LM318 идет выход подпертый на массу резистором 2к4, возможно надо делать два устройства. Извините.
С ув. Дмитр.

Диф. щуп можно к любому осциллографу подключать, он отличается от обычного только высоким сопротивлением "заземленного" вывода, который обычно с крокодилом.

Суть такая, если использовать два обычных щупа и крокодилы обоих щупов зацепить к точкам с разным напряжением, то то сквозь эти крокодилы пойдет большой ток, так как внутри осциллографа они объединены вместе.

Что бы этого не произошло, надо один из щупов заменить на дифференциальный, у которого оба вывода обладают высоким сопротивлением.

Еще он может пригодиться если осциллограф заземлен и от заземления избавиться невозможно, то тогда, в случае тестирования другой заземленной установки, даже с одним щупом может ток через "крокодил" пойти. Но это уже экзотика, так как от заземления можно легко куском изоленты избавиться.

Твой dso от батарейки и имеет один вход, поэтому использовать диф. щуп смысла нет в любом случае.

Нужен был щуп для осциллографа, чтоб смотреть форму напряжения 700 вольт переменного тока. Цены в магазинах серьёзные - придется потратить кучу денег, что-то от 3000р. Поэтому и взялся за этот проект. Стоимость деталей около 200 рублей. Схема несложная и если найдёте указанные микросхемы - соберёте за пару дней.

  • Недостатки - малая частота сигналов, которые мы можно исследовать без искажений. Для прямоугольника 20 кГц будет предел. Если настроить с некоторым сдвигом фазы, то синус можно смотреть около 50 кГц.
  • Преимущества - полная гальваническая развязка до 3 кВ.

Таким образом, этот прибор отлично пойдёт для инженеров по энергетике. Конечно, не в лаборатории, а в рабочей диагностике высоковольтных линий.

Основа конструкции - гальванически изолированный усилитель ACPL-790 . Отсюда основное ограничение частот работы зонда. Усилитель питается от изолированного преобразователя напряжения. Входной сигнал (максимум 300 мВ) снимается с резисторного делителя напряжения.

В представленном экземпляре рассчитано на 2,5 кВ постоянного тока на входе. У AD620 скорость нарастания сигнала на выходе микросхемы 0,3 В/мкс.

Питание усилителя измерения также от преобразователя, обеспечивающего двухполярное напряжение ±5 В. На входе 20 резисторов в 2 полосы. При высоких напряжениях на них выделится большая мощность, при 2,5 кВ около 3 Вт.

Плата имеет размер 100x65 мм и подходит для небольшого пластикового корпуса. Производство печатной платы - китайское (по акции за 10 штук размером 100x100 меньше 10 долларов).

Калибровка : использовалось напряжение обычной 220 В сети и качественный цифровой мультиметр. Настраиваем подстроечники до тех пор, пока на экране осциллографа не получим показания Vrms , подобные данным эталонного мультиметра.

Активный Щуп

См. подробную статью в ВРЛ №95 стр. 12

Активные щупы с малой входной ёмкостью. И. Шиянов.

________________________________________________________________________

http://nowradio. *****/pribory%20dly%20nastroyki%20KV-UKV%20apparatury. htm

http://*****/forum/download/file. php? id=16793

Налаживание радиоприемных устройств часто требует проверки гетеродинов измерения параметров генерируемою им ВЧ-напряжения. К сожалению, сделать это непосредственно с помощью ВЧ - осциллографа или милливольтметра бывает затруднительно. Очень большое влияние из работу микромощного генератора (гетеродина) оказывает входная емкость прибора, входное сопротивление. Например, вход популярного осциллографа С1-65 емкостью 30 pF и сопротивлением 1М может не только исказить результаты измерения, но даже сорвать генерацию гетеродина. А тут еще и коаксиальный кабель с волновым сопротивлением 50 Ом. Конечно, можно подключить вход через конденсатор 1 pF, но это может очень сильно исказить результат измерения (уровень ВЧ-напряжения достигший входа измерительного прибора может быть и 100 раз и более заниженным). Лучше всего пользоваться активным щупом, представляющим собой истоковый повторитель на высокочастотном полевом транзисторе имеющим входную емкость менее 1 pF, и входном сопротивлением более 10 МОм при выходном сопротивлении 50 Ом. Такой щуп, выполненный в виде отдельной экранированной коробки можно расположить в непосредственной близости от точки измерения, соединить с ней кратчайшими проводниками, полностью исключив влияние волнового сопротивления кабеля емкости прибора и кабеля входного сопротивления прибора на результат измерения. Более того, сам измерительный прибор может быть расположен на значительном расстоянии от точки измерения (можно использовать очень длинный соединительный кабель).

Принципиальная схема активного щупа на полевом транзисторе BF998 показана на рисунке. На схеме транзистор показан в корпусе так чтобы была понята его цоколёвка. Входная емкость щупа примерно 0,7 pF она образована тремя последовательно включенными конденсаторами С1-С3. Входное сопротивление 10 мегаом. Измеряемое ВЧ напряжение поступает на первый затвор транзистора. Напряжение смещения на этом затворе равно половине напряжения питания и создано резистивным делителем R2-R3. На затвор напряжение смещение подается через резистор R1 сопротивлением 10 Мом. Входная емкость транзистора BF998 равна 2,1 pF, поэтому напряжение, полученное в результате измерения нужно умножать на 3. Нагрузкой является резистор R4 его сопротивление должно быть таким как волновое сопротивление кабеля. Щуп работает в частотном диапазоне от 100 kHz до 1 GHz с неравномерностью коэффициента передачи по напряжению не более 7 5dB. На частотах более 1 GHz погрешность значительно возрастает. Источником питания служит сетевой адаптер от телеигровой приставки типа «Денди» (выходное постоянное нестабильное напряжение 8-11V) Напряжение стабилизируется на уровне 5V интегральным стабилизатором А1. Диод VD1 служит для защиты от ошибочного неправильного подключения источника. Питать щуп можно и от лабораторного источника напряжением 8…20V. Конструктивно щуп выполнен в экранированном корпусе неисправного всеволнового тюнера телевизора «LG» Монтаж печатно-объемным используя демонтированную плату данного тюнера. Монтаж первого затвора полевого транзистора на R1 и конденсаторы С1-С3 нужно сделать «на воздухе», чтобы исключить влияние емкости печатной платы и экранированного корпуса на входную цепь. Вход - два монтажных провода длиной не более 10 см. Провод, соединенный с С1 не должен соприкасаться изоляцией с платой или экраном корпуса.

Для питания 5V лучше использовать BF 1005 или BF 1012 S есть в Платане.

Радиоконструктор №12 2007г

Активный Щуп Осциллографа

Журнал "Радио", номер 6, 1999г.

http://www. *****/literature/radio/199906/p28_29.html

Широкополосные усилители с высоким входным сопротивлением, малой входной емкостью и низким выходным сопротивлением используются в различных устройствах. Одно из применений - входные щупы для осциллографов и другой измерительной аппаратуры. Как показано в этой статье, современные ОУ фирмы Analog Device позволяют решить эту задачу простыми средствами.

Осциллограф является одним из наиболее универсальных приборов, позволяющих измерять самые различные параметры электрического сигнала, а зачастую и значительно упрощать процедуру настройки электронных устройств. В некоторых случаях он просто незаменим. Однако многим знакома ситуация, когда подключение осциллографа к настраиваемому устройству приводит к нарушению его режимов. Виной тому в первую очередь служат вносимые в исследуемую цепь емкость и сопротивление входа осциллографа и его соединительного кабеля.

Большинство осциллографов, используемых радиолюбителями, имеют высокое входное сопротивление (1 МОм) и входную емкость 5...20 пФ. В сочетании с соединительным экранированным входным кабелем длиной около метра суммарная емкость возрастает до 100 пФ и более. Для устройств, работающих на частотах выше 100 кГц, такая емкость может оказать существенное влияние на результаты измерений.

Для устранения этого недостатка радиолюбители пользуются неэкранированным проводом (если уровень сигнала достаточно большой) или специальным активным щупом, в состав которого входит усилитель с высоким входным сопротивлением, выполненный, как правило, на полевых транзисторах . Применение такого щупа значительно снижает величину вносимой в устройство емкости. Однако недостатками некоторых из них являются низкий коэффициент передачи или наличие на выходе сдвига уровня, затрудняющего измерение постоянного напряжения. Кроме того, они имеют узкий диапазон рабочих частот (до 5 МГц), что также ограничивает их применение и требует коротких соединительных кабелей. Несколько лучшие параметры имеет щуп, описанный в . Следует отметить, что все эти щупы могут эффективно работать и с осциллографами, имеющими высокое входное сопротивление.

В настоящее время все большее распространение получают широкополосные осциллографы с диапазоном рабочих частот до 100 МГц и выше, имеющие низкое входное сопротивление - 50 Ом, поэтому их подключение к настраиваемому устройству зачастую становится практически невозможным. Не все из них комплектуются активными щупами, а применение резистивных делителей приводит к заметному снижению чувствительности.

Активный щуп, описание которого предлагается вниманию читателей, свободен от указанных недостатков. Он работает с различными осциллографами, входное сопротивление которых может быть низкоомным - 50 Ом или высокоомным - до 1 МОм, имеет диапазон рабочих частот 0...80 МГц и достаточно высокое входное сопротивление на низких частотах - 100 кОм. Его коэффициент передачи - 1 или 10, т. е. он не только не ослабляет, но и усиливает сигнал. К достоинствам щупа можно отнести и его небольшие габариты.

Таких параметров удалось достигнуть за счет применения современного быстродействующего ОУ фирмы Analog Devices. В частности, в данном щупе использован ОУ AD812AN (Чип – Дип – 180р Платан – 190р), который имеет следующие основные характеристики:

Верхняя рабочая частота - не менее 100 МГц; входное сопротивление - 15 МОм при входной емкости 1,7 пФ; входное напряжение - до + 13,5 В, а скорость нарастания выходного напряжения - 1600 В/мкс; выходной ток (при выходном сопротивлении 15 Ом) - до 50 мА; потребляемый ток в отсутствии входного сигнала - 6 мА.

Кроме того, ОУ имеет низкий уровень гармоник (-90 дБ на частоте 1 МГц и нагрузке 1 кОм) и малый уровень шума (3,5 нВ/^Гц), защиту от К3 (ток ограничен до 100 мА), рассеиваемая небольшим корпусом мощность достаточно велика - 1 Вт. К этому следует добавить, что цена микросхемы, содержащей два ОУ с такими параметрами, относительно невысока ($3...4).

Схема активного щупа приведена на рис. 1. В основном она соответствует стандартной схеме включения ОУ. Коэффициент передачи КU изменяется переключением SA1 элементов цепи обратной связи и имеет два значения: 1 и 10. Переключателем SA2 выбирают режим работы: с "закрытым" входом, когда на входе включен конденсатор С1 и постоянная составляющая напряжения на вход не проходит, или с "открытым" входом, когда она проходит.

Зарядные устройства" href="/text/category/zaryadnie_ustrojstva/" rel="bookmark">блок питания с выходным напряжением %12...15 В. Надо заметить, что потребляемый ток при отсутствии сигнала составляет 10...15 мА, при работе на низкоомную нагрузку при подаче сигнала ток может возрастать до 100 мА.

Литература

1. Гришин А. Активный щуп для осциллографа. - Радио, 1988, # 12, с. 45.

2. Иванов Б. Осциллограф - ваш помощник (активный щуп). - Радио, 1989, # 11, с. 80.

3. Турчинский Д. Активный щуп к осциллографу. - Радио, 1998, # 6, с 38.

Осциллографический ВЧ пробник с Свх = 0.5 пф

http://www. *****/ot07_19.htm

При осциллографических измерениях в высокочастотных устройствах входная емкость делителя может вносить значительные искажения в настраиваемый узел (например, при подключении пробника к контуру ВЧ генератора и т. п.). Делители с коэффициентом 1:1 имеют входную емкость порядка 100 пф и более (емкость кабеля плюс входная емкость осциллографа), что существенно ограничивает их частотный диапазон. В то же время стандартные пассивные делители 1:10 с входной емкостью 12 – 17 пф снижают чувствительность осциллографа до 50 мВ на деление (при максимальной чувствительности по входу равной 5 мВ / деление, типичной для большинства промышленных осциллографов), а также имеют все еще слишком большую входную емкость для проведения неискажающих измерений в ВЧ цепях, где емкости контуров могут иметь такое же значение.

Данная проблема решается использованием для измерений специальных активных пробников, выпускаемых для этой цели (например, фирмой Tektronix). Однако, эти устройства довольно трудно найти и их цена (от $150 и выше) сопоставима с ценой хорошего б/у осциллографа. В то же время не представляет большой сложности самостоятельно изготовить простой активный осциллографический пробник с малой входной емкостью, что и было сделано автором.

Активный осциллографический пробник предназначен для измерений переменных напряжений в низковольтных ВЧ схемах и имеет следующие характеристики:

    Диапазон измеряемых амплитудных значений сигнала – от 10 мВ до 10 В Частотная характеристика – линейна от 10 КГц до 100 МГц при малом сигнале Выходной сигнал – инвертированный, с коэффициентом деления 1:2 Напряжение питания – 12 вольт (4 * CR2025) или внешний источник Входная емкость – 0.5 пф (0.25 пф с внешним делителем 1: 10) Входное сопротивление – 100 килоом Потребляемый ток – 10 мА Размеры 60 х 33 х 16 мм

Внешний вид изготовленного прибора приведен на фото.

Конструкция прибора

Принципиальная схема пробника приведена на рисунке. Прибор собран на трех малошумящих СВЧ транзисторах 2SC3356 с граничной частотой 7 ГГц. Коэффициент усиления по напряжению составляет около 23 дб. Выходной эмиттерный повторитель служит для дополнительной развязки усилителя от нагрузки и может быть исключен, если пробник будет использоваться с одним и тем же осциллографом. Цепочка из светодиода, стабилитрона на 9 вольт и резистора служит индикатором включения и пороговым индикатором напряжения батареи питания. Питающее напряжение 12 вольт необходимо и достаточно для того, чтобы получать на выходе прибора максимальное амплитудное значение измеряемого сигнала до 5 вольт, и тем самым обеспечивать максимальный динамический диапазон до 50 дб при проведении измерений с установкой коэффициента отклонения, начиная от 5 мВ на деление (чувствительность большинства осциллографов).

https://pandia.ru/text/79/067/images/image004_5.jpg" width="750" height="373 src=">


Налаживание

Этот этап работы должен быть проведен весьма тщательно для получения нужного результата.

После сборки усилителя необходимо прежде всего точно установить его рабочую точку подбором резистора на 120 килоом для получения максимальной амплитуды неискаженного сигнала на выходе. В данной схеме и при свежих элементах питания этот режим достигается при установке постоянного напряжения от +5.2 до +5.3 вольта на эмиттере второго транзистора. Рабочая точка второго эмиттерного повторителя не требует настройки при указанных номиналах резисторов. Далее следует точно подобрать значение нижнего по схеме резистора (в данном случае 20 килоом) входного делителя для получения требуемого маштаба (1: 2) передачи сигнала между входом и выходом прибора на относительно низкой частоте (порядка 100 КГц). Заметим, что входное сопротивление усилителя при указанных номиналах деталей составляет около 5 килоом (на той же частоте), так что при отсутствии указанного резистора коэффициент передачи устройства будет выше требуемого примерно на 3 дб (величина ослабления входного сигнала равняется (105 / 5) = 26 дб, в то время как общий коэффициент усиления схемы равен 23 дб, а требуемый коэффициент передачи всего устройства должен быть равен 0.5, т. е. минус 6 дб). Подбор компенсирущих емкостей (0.5 пф параллельно резистору на 100 килоом, и подстроечный конденсатор в нижней ветви входного делителя) осуществляется путем сравнения коэффициента передачи на двух частотах, например, 1 МГц и 30 МГц, и подбора емкостей до получения нужного постоянного коэффициента передачи устройства. Далее производится окончательная проверка устройства на верхней рабочей частоте, если у радиолюбителя имеется такая возможность. В заключение проверяется фактическая входная емкость пробника на высокой частоте (например, подключением его к контуру с известными параметрами работающего генератора и контролем изменения частоты выходного сигнала по цифровому частотомеру или приемнику). При правильном выполнении конструкции прибора она не должна существенно отличаться от указанного на схеме значения (суммарная входная емкость в изготовленном автором пробнике, измеренная на частоте 20 МГц, составила 0.505 пф).

Замечания

Данный пробник создавался автором для измерений в цепях синусоидальных ВЧ сигналов в контурах генераторов и усилительных каскадов транзисторных схем, и он в целом решает поставленную задачу. Именно по этой причине в пробнике и был выбрано указанное выше соотношение между всеми основными параметрами прибора – его частотным диапазоном, высокой чувствительностью, достаточно большим входным сопротивлением и минимально возможной входной емкостью измерителя, а также небольшим потребляемым током. Радиотехника – это всегда компромисс при заданных разработчиком предельных значениях параметров.

Активный щуп для С1-94.

http://*****/izmeren/369-tri-pristavki-k-s1-94.html

Алюминий" href="/text/category/alyuminij/" rel="bookmark">алюминиевый стаканчик из-под валидола. С осциллографом щуп соединяют любым высокочастотным экранированным кабелем, желательно небольшого диаметра.

При налаживании щупа сначала подбирают (если это понадобится) резистор R1, чтобы обеспечить указанный на схеме режим работы транзистора VT2. Коэффициент передачи устанавливают подбором резистора R4, а верхнюю границу полосы пропускания - подбором конденсатора С4. Нижняя граница полосы пропускания зависит от емкости конденсатора С1.

Желательно проверить амплитудно-частотную характеристику щупа. Если на ней будет обнаружен подъем иа частотах, соответствующих верхней границе полосы пропускания, придется включить последовательно с конденсатором С4 резистор сопротивлением 30Ом

Взято отсюда: http://www. *****/lcmeter3.htm

Частотометр, измеритель ёмкости и индуктивности – FCL-meter

На транзисторе VT1 собран усилитель сигнала частотометра F1. Схема особенностей не имеет за исключением резистора R8 (100 Ом), необходимого для питания выносного усилителя с малой входной ёмкостью, во многом расширяющего область применения прибора. Его схема показана на рис. 2 .

При пользовании прибором без внешнего усилителя необходимо помнить, что его вход находится под напряжением 5 Вольт, и поэтому необходим развязывающий конденсатор в сигнальной цепи.

Предделитель частотометра F2 собран по типовой для большинства подобных прескалеров схеме, лишь введены ограничительные диоды VD3, VD4. Необходимо заметить, что при отсутствии сигнала предделитель самовозбуждается на частотах около 800-850 МГц, что является типичным для высокочастотных делителей. Самовозбуждение пропадает с подачей на вход сигнала от источника с входным сопротивлением близким к 50 Ом. Сигнал с усилителя и прескалера поступает на DD2.

Выносной щуп к осциллографу.

http://forum. /index. php? showtopic=13268&st=440

На рис. 3 представлена принципиальная схема повто­рителя напряжения, выполненного в виде электронного щупа к осциллографу. Схема повторителя содержит че­тыре транзистора. Согласованная пара полевых тран­зисторов VT1, VT2 с n-каналом работает в дифферен­циальном каскаде, транзистор VT3 является источником тока для указанного каскада, а транзистор VT4 включен в схему усилителя напряжения с общим эмиттером.

Устройство работает следующим образом. Входной сигнал подается на затвор транзистораVT1. Напряже­ние, усиленное полевым транзистором VT1, поступает на базу транзистора VT4.Выходное напряжение повто­рителя снимается с коллекторной нагрузки - резистора R10.Одновременно выходное напряжение прикладыва­ется к затвору второго транзистора дифференциальной пары VT1, VT2. Глубокая отрицательная обратная связь и большое дифференциальное сопротивление источника тока обеспечивают близкий к единице коэффициент пе­редачи повторителя. Выбором тока коллектора транзи­стора VT4 (около 4 мА) снижается нелинейность повто­рителя в области высоких частот. Температурная ста­бильность устройства обеспечивается за счет глубокой отрицательной обратной связи и введения источника то­ка на транзисторе VT3.

Основные характеристики повторителя напряжения представлены на рис. 4. Кривыми 1 -4 показана ампли­тудно-частотная характеристика устройства для различ­ных значений емкости нагрузки. С увеличением емкости от 15 до 100 пФ полоса пропускания повторителя, изме­ренная на уровне 3 дБ, сужается от 25 до 10 МГц. Указанная выше емкость нагрузки складывается из емкости кабеля и входной емкости осциллографа.

Рис. 3. Вариант схемы повторителя напряжения - щупа к осцилло­графу

Необходимо иметь в виду, что современные радио­частотные кабели с полиэтиленовой изоляцией имеют по­гонную емкость, увеличивающуюся с уменьшением вол­нового сопротивления. Так, например, типичное значение погонной емкости кабеля с волновым сопротивлением 50 Ом равно ПО…125 пФ, с волновым сопротивлением 75 Ом - в пределах 60…80 пФ. У высокоомных кабелей и кабелей с полувоздушной изоляцией погонная емкость может быть ниже, однако они сравнительно малодо­ступны

https://pandia.ru/text/79/067/images/image011_6.gif" alt="589x432, 6,8Kb - 589x432, 6,8Kb" width="589" height="432">

Представляю на Ваш суд обзор щупа для осциллографа после 3+ месяцев использования.
Upd. 22.02.2019 : обзор дополнен с учётом полученного опыта от эксплуатации щупа. Дополнение в конце обзора.

Вместо предисловия

На момент заказа (26.10.2014) щуп стоил $6.89, но у меня ещё были БиКовские монетки, с учётом которых цена получалась 6.55 и дешевле предложений я не нашёл. Заказан щуп был 26.10, а отправлен 28.10 – вполне стандартные для БиКа два дня. Посылка была без трек-номера. Фото посылки и упаковки не привожу. БиК никогда не отличался хорошим качеством упаковки (хотя я ничего дороже $20 у них не заказывал, полагаю, дорогостоящие заказы они упаковывают гораздо лучше). Сейчас ценник на щуп установлен $4.17, но в наличии его нет. А ещё БиК поменял фото щупа на странице описания, по которым видно, что поменялись цвета некоторых компонентов (ползунок переключателя стал чёрный, кольца – жёлтые, колпачки серые в тон щупа) и комплектация (колпачков стало в 2 раза больше, а колец на пару меньше). Кстати последний отзыв о щупе на странице магазина – мой. :)

Характеристики щупа со страницы магазина:

Щуп был упакован в полиэтиленовый пакет с инструкцией вкладышем, вот его комплектация:

Пару слов о назначении всех этих дополнительных «штучек».
Кольца цепляются на байонет подключаемый к осциллографу и ручку щупа и применяются для удобства определения по цвету колец какая ручка щупа к какому каналу осциллографа подключена (но т.к. в комплекте лишь один щуп, то полезны данные кольца будут владельцам таких же комплектных щупов). Вот поменял на своём щупе кольца на салатовые:

Насадка в виде колпачка предназначена для изоляции от общего, полезно когда нужно щупом «пробираться» сквозь провода/платы.

Почти такая же насадка отличающаяся лишь выступами с двух сторон от сигнальной иглы может применятся как и первая, но так же удобна при «тыкании» в платы с smd компонентами. Надеваются эти колпачки довольно туго, а снимаются ещё сложнее. :)

Ну и наконец, самая полезная, на мой взгляд, штука – захват. Применяется для держания щупа за провод/вывод измеряемого сигнала. Позволяет уцепиться за толщину от долей мм до 2.5мм. Работает как надо. Пользуюсь им, в отличие от всех вышеописанных, регулярно.





Так же в комплекте имеется отвёртка с пластиковой ручкой для калибровки щупа.
Внешний вид самого щупа вполне понятен из вышеприведённых фото, но для полноты восприятия добавлю фото такого ракурса:



Надо отметить, что инструкция из комплекта не для галочки, в ней есть практически вся необходимая информация. Смотрите сами:



Но, а о чём умалчивает инструкция, поведаю Вам я. Длина кабеля щупа с байонетом – 104см, длина ручки щупа от кабеля до иголки – 14см (т.е. общая длина щупа равна 104+14=118см, до заявленных 120см не хватило 2см), длина общего провода с «крокодилом» - 14.5см. Никаких запахов щуп не производил, понравилась мягкость/гибкость кабеля. У ползунка переключателя х1/х10 (выключатель делителя) за время использования фиксация в крайних положениях стала не такая чёткая. Сама конструкция переключателя доверия не вызывает, стараюсь пользоваться им как можно реже (как правило щуп всегда эксплуатируется в режиме х10), чего и рекомендую всем пользователям аналогичных щупов. Общий провод с крокодилом съёмный. Сигнальная игла не настолько острая, что бы ей можно было случайно уколоться, но и не тупая. За время использования если и затупилась, то я этого не заметил. Метали из которого она выполнена не магнитный.
Ещё до заказа данного щупа, как и полагается человеку покупающему вещь в личное пользование, я выяснил интересующие меня вопросы касательно подобных щупов. И поэтому знал, что импортный разъем под названием «BNC» на щупе стыкуется с нашим байонетом «СР-50-73» на осциллографе не идеально – BNC разъем не до конца закручивается. И знал, что это легко исправляется подходящим надфилем.
Собственно так и вышло - во входной разъём осциллографа щуп вставлялся плотно, но вот зафиксировать его не получилось – угол проточенных пазов на BNC разъёме немного великоват. Что ж снимаю и аккуратно подтачиваю надфилем. Вот так выглядит адаптированный под отечественный байонет BNC разъём:



Стоит отметить, что вес BNC разъёма этого щупа гораздо меньше веса разъёма СР-50-74 комплектного щупа. Это и неудивительно ведь в BNC металла используется гораздо меньше.

Покупался щуп для моего осциллографа С1-65. Этот осциллограф имеет заявленную полосу пропускания канала Y равную 0-35МГц (при спаде АЧХ не превышающей 3дБ, для 5мВ/дел), входную ёмкость не более 30пФ при сопротивлении равном 1.0МОм ±5%. Сопоставляем с характеристиками щупа – входное сопротивление подходящее, диапазон компенсации ёмкости тоже подходящий. Т.е. противопоказаний нет:)
В С1-65 есть встроенный калибратор, выдающий 1кГц меандр с амплитудой от 0.02 до 50В или постоянное напряжение с таким же диапазоном. Калибратор как раз и предназначен для проверки и подстройки канала Y осциллографа и комплектного делителя с коэффициентом деления Кд=10. К сожаленью мне осциллограф попал в руки лишь с одним таким щупом (далее по тексту я его буду называть комплектным, хотя на самом деле история его происхождения мне неизвестна):



Калибратор осциллографа С1-65:

Вот так выглядит принципиальная схема комплектного выносного делителя осциллографа С1-65 (которого у меня нет):

А реальная принципиальная схема устройства обозреваемого щупа мне неизвестна, т.к. его конструкция не разборная, но зная то, что щуп представляет собой частотно-компенсированный делитель напряжения и, зная его параметры, полагаю, что она (схема) выглядит так:

Где Rк – сопротивление центральной жилы кабеля щупа, а Cк – ёмкость образованная рядом расположенными центральной жилой и оплёткой кабеля щупа и его монтажа.
Параметры делителя на постоянном токе вычисляются следующим образом:
Сопротивление щупа Rщ=Rх+R2;
Коэффициент деления Kд=R2/(Rх+R2).
где Rх – общее сопротивление, состоящее из последовательно включённых сопротивлений резистора R1 и центральной жилы (сигнального провода) кабеля щупа Rк равного 100 Ом (измерено китайским мультиметром ADM-02), а R2 – входное сопротивление осциллографа (паспортные данные).
Т.е. в нашем случае на постоянном токе десятикратное деление напряжения обеспечивается делителем, состоящим из последовательно включенного резистора 8.9999МОм (+100Ом кабель) и 1.0МОм (±5%) входного сопротивления осциллографа.
На переменном токе параметры делителя вычисляются сложнее, т.к. уже участвуют ёмкости С1, ёмкость кабеля щупа и его монтажа - Ск, подстроечного конденсатора С2 и входная ёмкость осциллографа условно обозначенная как конденсатор С3.
Если отношение ёмкостей в ёмкостном делителе, образованном С1 и Ск+С2+С3(далее Сх) будет равно отношению сопротивлений в резистивном, то амплитудно-частотная характеристика щупа будет ровной во всем диапазоне, начиная от постоянного тока и до частот ограниченных общим (активным+реактивным) сопротивлением щупа (ведь 22.5пф указанные в характеристиках щупа на частоте 35МГц это реактивное сопротивление величиной 202Ома). Поэтому величину ёмкости конденсатора С1 выбирают, как правило, равной 1/9 величины ёмкости Сх. В нашем случае суммарную ёмкость входа осциллографа и щупа примем 30+120=150пФ (реально может и больше, но точно измерить ёмкость щупа нет возможности, поэтому взял максимальное значение заявленное в характеристиках), следовательно, ёмкость конденсатора С1 должна быть не более 16.7пФ. Изменением ёмкости подстроечного конденсатора С2 добиваются выполнения условия компенсации – Zc1*(R1+Rк)=Zcх*R2 (где Z=1/2πFC).

Настройка компенсации щупа.
Как и показано в инструкции к обозреваемому щупу при не настроенном делителе щупа меандр может принимать один из двух видов:

Так выглядят прямоугольные импульсы при ёмкости щупа больше необходимой.

А так - при ёмкости щупа меньше необходимой. Осциллограммы с моего осциллографа с сигналом от калибратора при крайних позициях подстроечного конденсатора (С2). Кстати, расположен С2, как Вы уже поняли, на байонете:


И так слишком большая ёмкость вызывает значительные выбросы по фронтам, недостаточная - их затягивание. Понятно, что при настроенном делителе форма вершины прямоугольного импульса должна стремится к ровной прямой (форма реального прямоугольного импульса отлична от прямоугольника - по фронту импульса в любом случае присутствует выброс в виде иголки, а по спаду присутствует скругление). Изменением ёмкости конденсатора С2 добиваются получения на экране осциллографа прямоугольных импульсов без завала фронтов, амплитуда выбросов на фронтах должна быть не более 5-10% от амплитуды импульсов. Для большей наглядности/точности я решил проводить настройку путём сравнения формы сигнала при измерении комплектным щупом и обозреваемым (с учётом вышеизложенных мыслей). Приступив к калибровке делителя щупа от встроенного в осциллографе калибратора я обнаружил как «вяло» меняется форма фронта импульса при значительной величине поворота подстроечного конденсатора (С2), что явно указывает на то, что для более точной калибровки делителя щупа в моём случае нужно использовать сигнал более высокой частоты. А значит, нужен был генератор прямоугольных импульсов частотой повыше. Поскольку в хозяйстве такого готового генератора не оказалось, то для этих целей был «собран» ВЧ генератор импульсов. Ну «собран» это не совсем подходящий термин в данном случае, т.к. вся конструкция представляет собой плату ардуино (к слову на тот момент плата ардуино была самодельной) с залитым и подключенным к ней БП (скетч написан не мной, а товарищем maksim с ресурса arduino.ru). При хорошем источнике питания форма прямоугольных импульсов выдаваемых микроконтроллером atmega328 (на нём базируется моя плата ардуино) при частоте задающего генератора 16МГц имеет мало искажений на частоте вплоть до 2МГц. Проводить дальнейшую калибровку встроенного делителя обозреваемого щупа решено было на частоте равной 1МГц. Так выглядит тестовый генератор в сборе:

А вот фото сравнения при настройке делителя щупа:




1МГц на комплектном щупе.




1МГц на обозреваемом щупе в режиме х1.


Тоже в режиме х10.
А так выглядит вершина импульса с частотой сигнала 4МГц на моём осциллографе:

Комплектный щуп слева, обозреваемый в режиме х1 – справа.
На фото хорошо видно, что обозреваемый щуп в таком режиме измерений проигрывает комплектному щупу и то, что оба щупа не годятся для столь точного наблюдения формы ВЧ сигнала (4МГц). Проигрыш обозреваемого щупа в таком тесте вполне закономерен, ведь в щупе подключен С2 и длина его кабеля значительно (на 33см) больше, а, следовательно, больше и его ёмкость. Однако в инструкции к щупу обозреваемый щуп в режиме х1 предлагают применять до частот величиною 6МГц. Оно конечно можно, но если чувствительность Вашего осциллографа по входу позволяет наблюдать сигнал с делителем (в режиме х10), то я рекомендую применять его и на частотах до 6МГц, т.к. это снижает входную ёмкость осциллографа, а, следовательно, вносит меньше искажений в исследуемый сигнал (наглядный пример на фото выше). Стоит отметить, что идеально откалибровать щуп у меня так и не получилось.
Вывод – лично меня щуп полностью устраивает. В паре с советским осциллографом с полосой пропускания до 100МГц обладающим высокоомным входом он выглядит привлекательней, чем комплектный. Покупать его есть смысл при отсутствии комплектного выносного делителя осциллографа.

Upd. 22.02.2019

Ещё одно предисловие

Какое-то время назад понадобился мне нихром/вольфрам, путём поиска в интернете я нашёл искомое. Так я узнал цену этих металлов и после этого меня не покидала мысль, что уж как-то дёшево продают этот щуп - такое сложное/технологичное устройство к тому же содержащее в себе дорогие материалы (нихром/вольфрам). Но пока щуп работал, вскрывать мне его не хотелось (я ведь полагал, что он не разборный). Однако не так давно в байонете щупа стал пропадать контакт и соответственно назрела необходимость вскрытия. Я вспомнил о том, что кто-то уже спрашивал про вскрытие этого щупа и номиналы деталей находящихся в байонете. Покопавшись в личных сообщениях сайта, я нашёл эту переписку с камрадом - . Он же и показал мне, как разбирается байонет подобных щупов.

Оказывается байонет довольно просто разбирается - необходимо лишь стянуть прорезиненный «хвост» щупа с металлического хвостовика байонета (см. фото). После этого нам откроется часть внутреннего мира щупа и одновременно с этим возможно придёт разочарование, т.к. центральная жила щупа выполнения из обычного медного многожильного провода (никакого нихрома/вольфрама), а сопротивление центральной жилы величиною 100 Ом достигается применением smd резистора распаянного на плате внутри байонета. Так же на плате помимо подстроечного конденсатора и резистора номиналом 100 Ом присутствует ещё один резистор номиналом 33 Ома. Номинал второго резистора может отличаться от моего в зависимости от емкости подстроечного конденсатора и максимальной заявленной частоты щупа.


Как видно по фото - флюс не отмыт.
Плата прикручена к металлическому каркасу байонета винтом м1.7 винт так же выступает в роли проводника - соединяет дорожку платы с общим (каркасом).
Кабель щупа опресован хвостовиком байонета.
Причина пропадания контакта оказалась в отломанной центральной металлической жиле со стороны байонета. После зачистки оставшейся части центрального контакта скальпелем, он прекрасно облудился неактивным флюсом.

В итоге схема щупа на самом деле выглядит скорее всего так:

Какие выводы можно сделать? - Китайцы такие китайцы:) А если серьёзно, то так как центральная жила из меди, то ни о каком распределенном сопротивлении речи быть не может. Соответственно точность на высоких частотах будет ниже… тем не менее, альтернатив за такую цену в свободной продаже не найти.
Обзор понравился +39 +57

Входная емкость современных осциллографов составляет порядка 30...50 пФ. При измерениях к ней добавляется емкость соединительного кабеля, и суммарная входная емкость достигает 100...150 пФ. Это может привести к существенному искажению результатов измерений и неправильной настройке, например, фильтров-пробок выходных каскадов усилителей записи магнитофонов. Вот почему при проведении исследований в цепях, критичных к вносимой емкости измерительного прибора, необходимо применять специальные согласующие устройства, имеющие большое входное сопротивление и небольшую емкость.

Для большинства практических работ необходимы два основных вида устройств: для гармонических сигналов малой амплитуды (1...50 мВ) с коэффициентом передачи К>1 и для сигналов большой амплитуды (до 10...20 В), позволяющие передавать постоянную составляющую сигнала и имеющие коэффициент передачи К=0,2...0,5.

Широкое распространение в последние годы быстродействующих аналоговых и цифровых микросхем, работающих при сравнительно больших напряжениях (ОУ широкого применения, микросхемы серии К561-до 15 В), выявило необходимость устройства, работающего в широком диапазоне напряжений с возможностью передачи постоянной составляющей сигнала.

Схема такого устройства в виде щупа приведена на рис. 1. Он выполнен по классической схеме истокового повторителя с использованием транзистора МОП-структуры и содержит минимальное количество деталей. Диапазон рабочих частот составляет О...5 МГц. Питание осуществляется от любого источника тока напряжением 7...15 В, например, аккумуляторной батареи 7Д-0,115-У1.1 или гальванических батарей "Крона", "Корунд". Входная емкость щупа - не более 4 пФ, входное сопротивление - не менее 3 МОм. Выходное напряжение при Uвх=0 co-ставляет 2,5 В. Диапазон входных напряжений в области отрицательных значений (до отсечки) - 7 В, в области положительных значений (до начала ограничения) составляет 13 В при Uпит=9В и 26В при Uпит=15В.

Коэффициент передачи в указанном диапазоне частот составляет 0,4.

Резисторы R1 и R2 образуют входной делитель напряжения, конденсатор С1 служит для частотной компенсации.

Ввиду значительного разброса параметров конкретных экземпляров транзисторов характеристики конструкций щупов также могут отличаться в основном по напряжению отсечки и коэффициенту передачи. Для получения максимального рабочего диапазона в области отрицательных значений входных напряжений необходимо применять транзисторы с максимальным (по абсолютной величине) напряжением отсечки. Автором был применен транзистор с Uзи oтc=4,2 В. Большинство транзисторов КП305И имеют меньшее значение Uзи отс, поэтому при необходимости напряжение отсечки щупа может быть увеличено путем уменьшения коэффициента передачи входного делителя, например, увеличив сопротивление резистора R1. Впрочем, для многих измерений, где требуется настройка по максимуму или минимуму напряжения, значение напряжения отсечки щупа не является существенным, поскольку настройку можно проводить по положительной полуволне сигнала.

Щуп собран в корпусе от фломастера. Монтаж объемный, без применения дополнительных конструктивных элементов. Выводы радиоэлементов соединены непосредственно между собой. Щуп подключают к осциллографу экранированным кабелем длиной не более 30 см.

Монтируя щуп, следует принимать меры по предупреждению пробоя полевого транзистора статическим электричеством и наводками от сети.

Настройка устройства заключается в калибровке для получения требуемого коэффициента передачи и подборе емкости конденсатора С1. Проведение калибровки потребует применения регулируемого источника постоянного тока и вольтметра. Подбором сопротивления резистора R1 устанавливают коэффициент передачи К=0,4 (или 0,5), при этом учитывают начальное напряжение смещения на выходе.

При подборе емкости конденсатора С1 необходим генератор прямоугольных импульсов с амплитудой сигнала на выходе 2...10 В и частотой следования 1...10 кГц. Для обеспечения крутых фронтов можно использовать триггерный делитель частоты, например, на микросхемах серий К155, К176, К561. Изменением емкости конденсатора С1 частотной компенсации добиваются получения на экране осциллографа прямоугольных импульсов без завала фронтов, амплитуда выбросов на фронтах должна быть не более 10 % от амплитуды импульсов. Слишком большая емкость вызывает значительные выбросы по фронтам, недостаточная - их затягивание.

На корпус изготовленной конструкции необходимо нанести надписи параметров устройства - входной емкости, сопротивления и коэффициента передачи.

При проведении измерений с отсчетом постоянной составляющей осциллограф необходимо скорректировать по уровню отсчета. Для этого следует замкнуть вход щупа и луч осциллографа установить на нулевую отметку.

© ru-opel.ru, 2024
Автомобильный портал